
CHAPTER II

SOLUTION METHODS FOR MULTICOMMODITY

NETWORK FLOW PROBLEMS

In this chapter, we try to summarize most of the solution techniques that have appeared in

the literature, especially those which appeared after 1980.

Due to the special block-angular structure of MCNF problems, many special solution

methods have been suggested in the literature. Basis partitioining methods partition the

basis in a way such that computing the inverse of the basis is faster. Resource-directive

methods seek optimal capacity allocations for commodities. Price-directive methods try to

find the optimal penalty prices (dual variables) for violations of the bundle constraints.

Primal-dual methods raise the dual objective while maintaining complementary slackness

conditions and will be discussed in more detail in Chapter 6. In the last two decades, many

new methods such as approximation methods, interior-point methods and their paralleliza-

tion have been proposed. Although the convex or integral MCNF problems are not the

main interests of this dissertation, we still summarize recent progress in these topics.

2.1 Basis partitioning methods

The underlying idea of basis partitioining methods is to partition the basis so that the

special network structure can be maintained and exploited as much as possible to make the

inversion of the basis more efficient. Hartman and Lasdon [167] propose a Generalized Upper

Bounding (GUB) technique which is a specialized simplex method whose only nongraphic

operations involve the inversion of a working basis with dimension equal to the number of

currently saturated arcs. Other basis partitioning methods based on GUB techniques have

also been suggested by McCallum [238] and Maier [228].

Grigoriadis and White [156, 155] observe that, in practice, the number of active bundle

constraints in the optimal solution are considerably smaller than the number of capacitated

17

arcs. Therefore they partition the constraints into two groups: current and secondary

constraints. Using the dual simplex method with Rosen’s partition technique [273], they

iteratively solve sequences of LPs that use only updated current constraints. These LPs do

not need to be solved to optimality. The algorithm only requires a basis change when dual

feasibility is maintained and the objective value decreases.

Kennington [200] implements the primal partitioning methods of Saigal [277] and Hart-

man and Lasdon [167]. His implementation of basis partitioning methods are computation-

ally inferior to resource-directive subgradient methods.

EMNET, developed by McBride [233] and based on the factorization methods (variants

of basis partition methods) of Graves and McBride [154], is designed to quickly solve LP

problems with network structure and network problems with side constraints. Combined

with other techniques such as resource-directive heuristics and price-directive column gen-

eration, they conclude that basis partitioning methods are computationally efficient. In

particular, McBride and Mammer [236] use a capacity allocation heuristic to produce a

hot-start basis for EMNET which shortens the computational time. McBride [235] uses

a reource-directive decomposition heuristic to control the size of the working inverse and

dramatically reduce the solution time for MCNF problems with many side constraints.

Mamer and McBride [229, 237] also apply column generation techniques of DW decompo-

sition to solve message routing problems and find a dramatic reduction in the number of

pivots needed. The combination of EMNET and column generation shows a larger reduc-

tion in computation time than direct application of EMNET. A similar specialized simplex

algorithm has also been proposed by Detlefsen and Wallace [92]. Their paper addresses

more details of the network interpretation of basis inversion. Independent of the number

of commodities, their working basis has dimesion at most equal to the number of arcs in

the network, which seems to be suitable for telecommunication problems that often have a

large number of commodities.

Castro and Nabona [70] implement a MCNF code named PPRN to solve min-cost MCNF

problems which have a linear or nonlinear objective function and additional linear side

constraints. PPRN is based on a primal partitioning method using Murtagh and Saunders’

18

[246] strategy of dividing the variables into three sets: basic, nonbasic and superbasic.

Farvolden et al. [109] partition the basis of the master problem using the arc-path

form in DW decomposition. Their techniques isolate a very sparse and near-triangular

working basis of much smaller dimension, and identify nine possible types of simplex pivots

that can be done by additive and network operations to greatly improve the efficiency. Such

techniques are later used to solve a MCNF problem with jump constraints (i.e., commodities

can not be shipped along more than a fixed number of arcs) [232] and further refined by

Hadjiat et al. [163] so that the dimension of the working basis is at most equal to the

number of arcs in the network (almost half the size of the working matrix of [109]).

2.2 Resource-directive methods

Suppose on each arc (i, j) we have assigned capacity rkij for each commodity k so that

∑
k∈K

rkij ≤ uij is satisfied. Then the original problem is equivalent to the following resource

allocation problem (RAP) that has a simple constraint structure but complex objective

function:

min
∑

k∈K

zk(rk) = z(r) (RAP)

s.t.
∑

k∈K

rkij ≤ uij ∀(i, j) ∈ A

0 ≤ rkij ≤ uij ∀(i, j) ∈ A, ∀k ∈ K

For each commodity k, zk(rk) can be obtained by solving the following single commodity

min-cost network flow subproblem.

min
∑

(i,j)∈A

ckijx
k
ij = zk(rk)

s.t.
∑

(i,j)∈A

xkij −
∑

(j,i)∈A

xkji = bki ∀i ∈ N

0 ≤ xkij ≤ rkij ∀(i, j) ∈ A

It can be shown that the objective function z(r) is piecewise linear on the feasible set

of the capacity allocation vector r. There are several methods in the literature to solve

19

the RAP such as tangential approximation [131, 132, 201], feasible directions [201], and

the subgradient method [131, 161, 153, 168, 199]. Shetty and Muthukrishnan [289] give a

parallel projection algorithm which parallelizes the procedure of projecting new resource

allocations in the resource-directive methods.

2.3 Price-directive methods

Price-directive methods are based on the idea that by associating the bundle constraints with

”correct” penalty functions (dual prices, or Lagrange multipliers), a hard MCNF problem

can be decomposed into k easy SCNF problems.

2.3.1 Lagrange relaxation (LR)

Lagrange relaxation dualizes the bundle constraints using a Lagrangian multiplier π ≥ 0

so that the remaining problem can be decomposed into k smaller min-cost network flow

problems. In particular,

min
∑

k∈K

ckxk +
∑

a∈A

πa(
∑

k∈K

xka − ua) = L(π)

s.t. Ñxk = bk, ∀k ∈ K

x ≥ 0

where Ñ is the node-arc incidence matrix. The Lagrangian dual problem seeks an optimal

π∗ for L∗ = max
π≥0

L(π). This is a nondifferentiable optimization problem (NDO) having the

format max{ϕ(y) : y ∈ Y } where ϕ is a concave nondifferentiable function and Y is a convex

nonempty subset of R
|A|
+ .

Subgradient methods are common techniques for determining the Lagrange multipliers.

They are easy to implement but have slow convergence rates. They usually do not have

a good stopping criterion, and in practice usually terminate when a predefined number of

iterations or nonimproving steps is reached. Papers regarding subgradient methods have

been listed in Section 2.2. Chapter 16 and 17 of [3] also present illustrative examples.

Bundle methods are designed to solve general NDO problems and thus are suitable for

solving the Lagrangian dual problems. In particular, let g(y′) denote a supergradient of ϕ

20

at y′, that is, ϕ(y) ≤ ϕ(y′) + g(y − y′) for all y in Y . Define the bundle to be a set β that

contains all ϕ(yi) and g(yi) generated in previous iterations. The generic bundle method

starts with an initial y′ and β and searches for a tentative ascent direction d. It tentatively

updates y′′ = y′+ θd. If the improvement ϕ(y′′)−ϕ(y′) is large enough, the solution y′ will

move to y′′. Otherwise, it adds ϕ(y′′) and g(y′′) to the bundle β so that next iteration may

give a better tentative ascent direction.

In general, bundle methods converge faster and are more robust than subgradient meth-

ods. Frangioni’s Ph.D. dissertation [118] is a rich resource for the bundle method and its

application to solving MCNF problems. Gendron et al. [130] use the bundle method to solve

a multicommodity capacitated fixed charge network design problem. Cappanera and Fran-

gioni [59] give its parallelization together with discussion on other parallel price-directive

approaches.

Both the subgradient methods and bundle methods are dual based techniques, in which

usually extra effort has to be made to obtain a primal feasible solution. Next we will

introduce methods that improve the primal feasible solution and compute the Lagrangian

multipliers by solving a LP in each iteration.

2.3.2 Dantzig-Wolfe decomposition (DW)

As previously mentioned in Section 1.4.3, here we illustrate more details about the DW

procedures using the arc-path form. The primal path formulation is as follows:

min
∑

k∈K

∑

p∈Pk

PCc
pfp = Z∗P (f, s) (P PATH)

s.t.
∑

p∈Pk

fp = 1 ∀k ∈ K (2.1)

∑

k∈K

∑

p∈Pk

(Bkδpa)fp ≤ ua ∀a ∈ A (2.2)

fp ≥ 0 ∀p ∈ P k, ∀k ∈ K

21

whose dual is

max
∑

k∈K

σk +
∑

a∈A

ua(−πa) = Z∗D(π, σ) (D PATH)

s.t. σk +
∑

a∈A

Bkδpa(−πa) ≤ PCc
p ∀p ∈ P k, ∀k ∈ K (2.3)

πa ≥ 0 ∀a ∈ A

σk : free ∀k ∈ K

where σk are the dual variables for the convexity constraint (2.1) and −πa are the dual

variables for the bundle constraints (2.2).

The complementary slackness (CS) conditions are:

(−πa)(
∑

k∈K

∑

p∈PK

(Bkδpa)fp − ua) = 0 ∀a ∈ A (CS.1)

σk(
∑

p∈PK

fp − 1) = 0 ∀k ∈ K (CS.2)

fp(PC
c+π
p − σk) = 0 ∀p ∈ P k, ∀k ∈ K (CS.3)

where PCc+π
p :=

∑
a∈A

Bkδ
p
a(ca+ πa) and ca is the original cost of arc a. The reduced cost of

path p is PCc
p −

∑
a∈A

Bkδ
p
a(−πa)− σk =

∑
a∈A

Bkδ
p
a(ca + πa)− σk = PCc+π

p − σk.

Suppose a feasible but nonoptimal primal solution (f, s) is known. We construct the

RMP which contains the columns associated with positive f and s, solve the RMP to

optimality, and obtain its optimal dual solution (σ∗,−π∗). This optimal dual solution can

be used to identify profitable columns (i.e. columns with reduced cost PCc+π∗
p − σ∗k < 0)

and add them to construct a new RMP. The procedure for generating new columns is

equivalent to solving k subproblems. Each subproblem corresponds to a shortest path

problem from sk to tk for a single commodity k. In particular, using (cij + π∗ij) as the new

cost for each arc (i, j), if the length of the shortest path pk∗ for commodity k, PCc+π∗

pk∗ =

∑
(i,j)∈A

Bkδ
pk∗

ij (cij + π∗ij), is shorter than σ∗k, then we add the column corresponding to path

pk∗ to the RMP. The algorithm iteratively solves the RMP and generates new columns

until no more columns have negative reduced cost (which guarantees optimality). During

the procedure, primal feasibility and complementary slackness are maintained.

22

The DW algorithm stated above can also be viewed as a procedure to identify the optimal

dual variables (σ∗,−π∗) by solving sequences of smaller LP problems (RMP). Compared

to LR, DW spends more time in solving the RMP, but obtains better dual variables. In

general, DW requires fewer iterations than LR to achieve optimality. Another advantage of

DW is that it always produces primal feasible solutions which can be used as upper bounds

in minimization, while its dual objective can be used as a lower bound. LR, on the other

hand, usually only guarantees an optimal dual solution and may require extra effort to

obtain an optimal primal solution.

Unlike the conventional dual-based subgradient methods, the volume algorithm of Bara-

hona and Anbil [24] is an extension of the subgradient methods. It produces approximate

primal solutions in DW procedures. The method is similar to the subgradient method and

the bundle method introduced in Section 2.3.1, and has the following steps:

• Step 0: Given a feasible dual solution −π to the bundle constraint (2.2), we solve

|K| subproblems. Each subproblem has the following form:

min
∑

(i,j)∈A

(ckij + πij)x
k
ij = Z

k
(Vol(k))

s.t.
∑

(i,j)∈A

xkij −
∑

(j,i)∈A

xkji = bki ∀i ∈ N

xkij ≥ 0 ∀(i, j) ∈ A

Suppose (Vol(k)) has optimal solution xk and optimal objective value Z
k
.

Set t = 1, x = [x1 . . . x|K|]T and Z =
|K|∑
k=1

Z
k
−

∑
(i,j)∈A

uijπij .

• Step 1: Compute vtij = uij −
∑
k∈K

xkij , and πtij = max{πij + θvtij , 0} for each arc (i, j)

where the step length θ = f UB−Z
‖vt‖2

, f is a parameter between 0 and 2, and UB is

the upper bound on the objective for P PATH which can be computed by any primal

feasible solution.

For each commodity k, we solve (Vol(k)) using the new πtij instead of πij in the

objective function, and obtain its optimal solution xkt and optimal objective value

23

Zkt

Set xt = [x1t . . . x|K|t]T and Zt =
|K|∑
k=1

Zkt −
∑

(i,j)∈A

uijπ
t
ij .

Update x = ηxt + (1− η)x where η is a parameter between 0 and 1.

• Step 2: if Zt > Z then update πij = πtij for each arc (i, j) and Z = Z t.

Let t = t+ 1, and go to Step 1.

The algorithm terminates when either
∥∥vt

∥∥ becomes too small or

∣∣∣∣∣
∑

(i,j)∈A

uijπij

∣∣∣∣∣ is smaller

than some threshold value.

Suppose Zt ≤ Z for all iterations tc ≤ t ≤ td. In these iterations, the volume algorithm

uses the new xkij but the old πij and Z to compute the new subgradients vtij . In such case,

x = (1 − η)td−tcxtc + (1 − η)td−tc−1ηxtc+1 + . . . + (1 − η)ηxtd−tc−1 + ηxtd−tc . That is, x

is a convex combination of {xtc , . . . , xtd} which is an approximation to the optimal arc flow

solution.

The basic idea is, given (Z,−π) where −π is a feasible dual variable to the bundle

constraint and Z is computed using −π, the volume algorithm moves in a neighborhood

of (Z,−π) to estimate the volumes below the faces that are active in the neighborhood;

thus better primal solutions are estimated at each iteration. On the other hand, using the

conventional subgradient methods, the subgradient v is usually determined by only one

active face, and no primal solution can be computed.

The volume algorithm has been tested with success in solving some hard combinatorial

problems such as crew scheduling problems [25], large scale facility location problems [26,

27], and Steiner tree problems [23]. In [23], the problem is formulated as a non-simultaneous

MCNF problem. It is believed that the volume algorithm is advantageous for solving set

partitioning-type problems including the MCNF problems. It will be interesting to learn

how this new algorithm performs in solving general MCNF problems. To the best of our

knowledge, no such work has been done yet.

2.3.3 Key variable decomposition

Based on a primal partitioning method of Rosen [273], Barnhart et al. [36] give a column

generation algorithm which is especially suitable for problems with many commodities (OD

24

pairs). In particular, they select a candidate path called a key path, key(k), for each

commodity k. After performing some column operations to eliminate key(k) for each k,

they obtain the following CYCLE form:

min
∑

k∈K

∑

p∈Pk

CCc
pfp +

∑

a∈A

Mαa = Z∗C(f, α) (CYCLE)

s.t.
∑

p∈Pk

fp = 1 ∀k ∈ K (2.4)

∑

k∈K

∑

p∈Pk

Bk(δpa − δkey(k)a)fp − αa ≤ ua −
∑

k∈K

(Bkδkey(k)a) ∀a ∈ A (2.5)

fp ≥ 0 ∀p ∈ P k, ∀k ∈ K

αa ≥ 0 ∀a ∈ A

where αa is an artificial variable for each arc a with large costM , and CCc
p = PCc

p−PC
c
key(k)

represents the cost of several disjoint cycles obtained by the symmetric difference of path p

and key(k). This CYCLE formulation is essentially the same as the P PATH formulation

in Dantzig-Wolfe decomposition. The artificial variables with large costs here are used to

get an easy initial primal feasible solution for the algorithm.

When the number of commodities (OD pairs) is huge, both CYCLE and P PATH will

have many constraints, which makes the RMP more difficult. To overcome this compu-

tational burden, Barnhart et al. exploit Rosen’s key variable concept which relaxes the

nonnegativity constraints for each key path (i.e., it allows fkey(k) to be negative). The

RMP can be solved by iteratively solving these easier problems RELAX(i), each of which

contains only (1) all of the bundle constraints and (2) the nonnegativity constraints for all

variables except the key variables.

min
∑

k∈K

∑

p∈Pk

CCc,i
p f ip +

∑

a∈A

Mαia = Z∗CR(i)(f, α) (RELAX(i))

s.t.
∑

k∈K

∑

p∈Pk

Bk(δpa − δkey(k,i)a)f ip − αia ≤ ua −
∑

k∈K

(Bkδkey(k,i)a) ∀a ∈ A (2.6)

f ip ≥ 0 ∀p ∈ P k \ key(k, i), ∀k ∈ K ; fkey(k,i) : free ∀k ∈ K

αia ≥ 0 ∀a ∈ A

25

After solving RELAX(i), the algorithm will check the sign of key variables by calculating

f i∗
key(k,i) = 1−

∑
p∈Pk\key(k,i)

f i∗p . For those key variables with negative signs, the algorithm will

perform a key variable change operation which replaces the current key variable with a new

one. Among all the positive path variables, the one with the largest value is usually chosen

since intuitively that path is more likely to have positive flow in the optimal solution. This

algorithm maintains dual feasibility and complementary slackness while trying to achieve

primal feasibility (which will be attained when all key variables become nonnegative).

Like the subproblems of DW, the subproblems of RELAX(i) are shortest path problems

for each commodity k. Suppose in some iteration we solve the RMP of RELAX(i) and

obtain the optimal dual solution associated with the bundle constraint (2.6), denoted by

−π∗. A shortest path pk∗ is generated if its reduced cost PCc+π∗,i
pk∗ −PCc+π∗,i

key(k,i) < 0. Barnhart

et al. [34, 35] further use a simple cycle heuristic to generate more good columns to shorten

the overall computational time. In particular, for commodity k, the symmetric difference

of shortest path pk∗ and key path key(k, i) forms several simple cycles. Intuitively, these

simple cycles have better potential to contain positive flows since they contribute to both

the shortest path pk∗ and the key path key(k, i). Each simple cycle corresponds to a simple

column in the RELAX(i) formulation. Suppose pk∗ and key(k, i) form ñ simple cycles.

Instead of adding only one column, they add all these ñ simple columns at once. Such

heuristics do speed up the LP solution procedures.

We will exploit this key variable concept in Section 6.2.

2.3.4 Other price-directive methods

The primal column generation techniques correspond to the dual cutting-plane generation

schemes which increasingly refine the polyhedral approximation of the epigraph of the La-

grangian L(π). Goffin et al. [137] propose a specialized analytic center cutting plane method

(ACCPM) [136, 18] to solve the nonlinear min-cost MCNF problems.

Using a piecewise continuous, smooth, convex and nonseparable linear-quadratic penalty

(LQP) function to penalize the overflow of bundle constraints for each arc, Pinar and Zenios

[266] design a parallel decomposition algorithm which parallelizes the procedures of solving

26

the nonlinear master problem and independent subproblems in the framework of price-

directive methods.

Schultz and Meyer [283] give a price-directive interior-point method using a barrier

function (see Section 2.6). Many approximation algorithms are also based on price-directive

techniques and will be discussed in Section 2.5. The Section 1.3 of Grigoriadis and Khachiyan

[160] cites other old price-directive methods that we omit in this section.

2.4 Primal-dual methods (PD)

The primal-dual method is a dual-ascent LP solution method which starts with a feasible

dual solution, and then iteratively constructs a primal feasibility subproblem called the

restricted primal problem (RPP) based on the complementary slackness (CS) conditions.

It uses the optimal dual solution of RPP to improve the current dual solution if primal

infeasibility still exists. The algorithm terminates when all primal infeasibility disappears.

Jewell [182, 181] proposes a PD algorithm to solve the min-cost MCNF problem. Given

feasible dual variables, he uses the CS conditions to construct a restricted network which can

be viewed as |K| layers of single-commodity networks plus some connecting arcs between

layers representing the bundle constraints. The RPP becomes a max MCNF problem. He

uses a technique similar to the resource-directive methods which first identifies augmenting

paths inside each layer until the layer is saturated, and then solves a capacity reallocation

problem between layers. His approach requires enumeration of all paths and cycles, which

is not efficient.

Barnhart and Sheffi [32, 38] present a network-based primal-dual heuristic (PDN) which

solves a large-scale MCNF problem that is impractical to solve using other exact solution

methods. In each primal-dual iteration of PDN, the RPP is solved by a network-based flow

adjustment algorithm (FAA) instead of using conventional LP methods. When the FAA

experiences insufficient progress or cycling, the simplex method will be invoked to solve the

RP.

Given a feasible dual solution, PDN iteratively identifies an admissible set Sk which

contains arcs with zero reduced cost in the node-arc form for each commodity k, searches for

27

a flow assignment that satisfies the CS conditions using the FAA, and improves the current

dual solution if the RPP is solved with positive primal infeasibility. PDN terminates when

either the RPP cannot be solved by the FAA or optimality is achieved. In the first case,

if the simplex method is invoked but fails due to the huge size of RPP, Barnhart uses a

primal solution heuristic [33] that generates feasible primal solutions from the known dual

feasible solution.

Polak [268] gives a Floyd-Warshall-like algorithm to determine the step length required

to improve the dual solution in the PD procedures of solving MCNF problems. More details

about PD algorithms will be discussed in Chapter 6.

2.5 Approximation methods

Given a desired accuracy ε > 0, an ε-optimal solution is a solution within (1 + ε) (for

minimization problems, or (1− ε) for maximization problems) of the optimal one. A family

of algorithms is called a fully polynomial time approximation scheme (FPTAS) when it

computes an ε-optimal solution in time polynomial in the size of problem input and ε−1.

Shahrokhi and Matula [287] present the first combinatorial FPTAS for a special case

of the max-concurrent flow problem that has arbitrary demands and uniform capacities.

The idea is to start with a flow satisfying the demands but not the bundle constraints,

and then iteratively reroute flow to approach optimality. They also use an exponential

function of the arc flow as the ”length” of the arc to represent its congestion, so that

their algorithm will iteratively reroute flow from longer paths (more congestion) to shorter

paths (less congestion). Using different ways for measuring the congestion on arcs and a

faster randomized method for choosing flow paths, Klein et al. [205] further improve the

theoretical running time.

Leighton et al. [218] use the same randomized technique of [205] but a different rerouting

scheme to solve a max-concurrent flow problem that has nonuniform integer capacities.

Instead of only rerouting a single path of flow as in [287, 205], they solve a min-cost flow

problem which takes more time but reroutes more flows and makes greater progress at each

iteration. Goldberg [138] and Grigoriadis and Khachiyan [157] independently use different

28

randomized techniques to reduce the randomized algorithmic running time of [218] from

a factor of ε−3 to a factor of ε−2. Radzik [269] achieves the same complexity using a

deterministic approximation algorithm.

Most of the approximation algorithms mentioned above are designed for max MCNF

or max-concurrent flow problems, which can be viewed as packing LPs. In particular,

let P̂ k denote the polytope of all feasible flows for commodity k. Then, the max MCNF

problem can be viewed as packing feasible paths from the polytope
⋃
k

P̂ k subject to the

bundle constraints. Similarly, the min-cost MCNF problem can be viewed as packing paths

subject to bundle and budget constraints. It can be solved by iterations of a separation

problem that determines the optimal budget using bisection search [267].

Recently, Grigoriadis and Khachiyan[157, 158], Plotkin et al. [267], Garg and Könemann

[128, 208], and Young [309] have investigated approximation methods for solving packing

and covering problems, especially on applications in the MCNF fields. These algorithms

are based on Lagrangian relaxation and can be viewed as randomized potential reduction

methods [157, 158]. For example, given a current flow f1, [267] computes an optimal flow f ∗1

(or [157] computes an approximately optimal flow) that uses a ”penalty” potential function

as the arc length to represent the violation of bundle constraints, and updates the flow

f2 = (1− σ)f1 + σf∗1 using some predefined constant σ so that the total ”potential” in the

next iteration will be reduced. The length for each arc is usually an exponential function

[157, 158, 267, 309] (or a logarithmic function [159]) measuring the congestion (i.e., violation

of bundle constraints). While [267, 157] improve the potential by a fixed amount and reroute

flows at each iteration, [309] gives an ”oblivious” rounding algorithm which builds the flow

from scratch without any flow rerouting operations. The running time of [267] and [309]

depend on the the maximum possible ”overflow” of the bundle constraints for points in the

polytope
⋃
k

P̂ k, denoted as the width of the problem.

Karger and Plotkin [192] combine the approximate packing techniques of [267] and the

flow rerouting order of [269] to give a better deterministic approximation algorithm to

solve min-cost MCNF problems. They develop new techniques for solving the ”packing

with budget” problems. Such techniques can be used to solve problems with multiple

29

cost measures on the arc flows. Its direct implementation is slow, but a fast practical

implementation is proposed by Oldham et al. [256, 139] using techniques from [159, 192, 267]

to fine-tune many algorithmic parameters.

Garg and Könemann [128, 208] propose a simple combinatorial approximation algo-

rithm similar to Young’s [309], which has the most improvement at each iteration using

shortest path computations. Fleischer [111] further improves the algorithms of [128] and

gives approximation algorithms that have the best running time for solving the max MCNF,

max-concurrent flow and min-cost MCNF problems.

Grigoriadis and Khachiyan [158] use a 2-phase exponential-function reduction method

to solve general block-angular optimization problems. Both phases are resource-sharing

problems. The first phase is to obtain a feasible solution interior to the polytope
⋃
k

P̂ k. The

second phase uses a modified exponential potential function to optimize on both bundle and

flow conservation constraints.

Awerbuch and Leighton [19, 20] give deterministic approximation algorithms which

use local-control techniques similar to the preflow-push algorithm of Goldberg and Tar-

jan [141, 143]. Unlike previous approximation algorithms that usually relax the bundle

constraints and then determine shortest paths or augmenting paths to push flow towards

sinks, their algorithms relax the flow conservation constraints and use an ”edge-balancing”

technique which tries to send a commodity across an arc (u, v) if node u has more conges-

tion than node v. Based on these edge-balancing methods [19, 20] (denoted as first-order

algorithms), Muthukrishnan and Suel [248] propose a second-order distributed flow algo-

rithm which decides the amount of flow to be sent along an arc by a combination of the

flow sent on the same arc in previous iteration and the flow determined using the first-order

algorithms. Their experiments show a significant improvement in running time compared

to the first-order algorithms. Kamath et al. [190, 262] generalize the algorithm of [20] to

solve min-cost MCNF problems, but their algorithm is inferior to [192].

Schneur and Orlin [280, 281] present a penalty-based approximation algorithm that

solves the min-cost MCNF problems as a sequence of a finite number of scaling phases. In

each phase, |K| SCNF problems are solved, one for each commodity. Besides the original

30

linear flow cost ckijx
k
ij , they assign a quadratic penalty term ρe2ij for each arc (i, j) where

eij = max{
∑
k∈K

xkij−uij , 0} represents the overflow (or excess) on arc (i, j). Thus each SCNF

problem becomes a nonlinear min-cost network flow problem which is solved by a negative

cycle canceling algorithm. In particular, at each scaling phase their algorithm iteratively

sends exactly δ units of flow along negative δ-cycles which are defined as a cycle that allows

flow of δ units. In the end of a scaling phase, the flow x is (δ, ρ)-optimal which means

there exists no negative cycle that allows flow of δ units. By using new δ (usually δ
2) and

ρ (usually Rρ where 1 < R < 2) in the next scaling phase, the algorithm can be shown to

terminate in finite number of scaling phases.

Bienstock [48] solves network design problems and other MCNF test problems (from

[139]) by an approximate algorithm based on [158, 267] with new lower bounding techniques.

Instead of using specialized codes such as shortest path or min-cost network flow programs,

he uses CPLEX 6.5 to solve the subproblems. In his recent comprehensive paper [49], he

reviews many exponential potential function based approximation algorithms and discusses

detailed issues regarding empirical speedups for algorithms based on this framework.

The following summarizes the current fastest FPTAS :

• max MCNF problems: [111]

• max-concurrent flow problems: [111] (when graph is sparse, or |K| is large), [218] and

[269]

• min-cost MCNF problems: [111] (when |K| > |A|
|N |), [159]

2.6 Interior-point methods

Kapoor and Vaidya [191] speed up Karmarkar’s algorithm [193] for solving MCNF prob-

lems. Using special computing and inversion techniques for certain matrices, Vaidya’s path-

following interior-point algorithm [300] achieves one of the current fastest running times for

obtaining exact MCNF solutions. Murrary [245] also gives a specialized MCNF algorithm

based on the algorithm of Monteiro and Adler [242].

Putting the flow imbalance as a quadratic term (equal to 0 if and only if flow conservation

31

is maintained) in the objective function, Kamath and Palmon [189, 262] present an interior-

point based FPTAS that solves a quadratic programming (QP) min-cost MCNF problem

subject to only the bundle and nonnegativity constraints. With a sufficiently small ε, their

algorithm can compute an exact solution using the rounding algorithm of Ye [307].

While these algorithms introduced above have good theoretical time bounds, they are

considered to be practically unattractive. We now introduce some practical interior-point

MCNF algorithms.

Schultz and Meyer [283] develop a decomposition method based on solving logarithmic

barrier functions. Their algorithm involves three phases: relaxed phase, feasibility phase,

and refine phase. After obtaining a solution of the relaxed problem (i.e., relaxing the

bundle constraints), the feasibility phase tries to obtain a feasible interior point which will

be refined to optimality in the refine phase. Both the feasibility and refine phases find

an approximate solution of the barrier problem using a generalization of the Frank-Wolfe

method [120] which does a multi-dimensional search rather than a line search and is more

easily parallelized. Instead of using a complex coordinator [283] to determine step lengths

in the search directions, Meyer and Zakeri [239, 310] further improve this procedure using

multiple simple coordinators that take more advantage of parallelism.

General interior-point methods for LP usually need to solve a symmetric system of

linear equations. In many cases, the Cholesky factorization still creates a dense submatrix

even if the best fill-in minimization heuristics are applied. To speed up the factorization

by taking advantage of the MCNF structure, basis partitioning techniques are used by

Choi and Goldfarb [76] and Castro [67] in their primal-dual interior-point algorithms. To

efficiently solve the dense linear system, Choi and Goldfarb [76] suggests parallel and vector

processing while Castro [67] applies a preconditioned conjugate gradient (PCG) method.

Parallel implementation on primal-dual interior-point methods using PCG techniques can

be found in Castro and Frangioni [69] and Yamakawa et al. [305].

A specialized dual affine-scaling method (DAS) for solving an undirected min-cost

MCNF problem has been implemented by Chardaire and Lisser [72, 73]. Starting with

a feasible dual interior point, the algorithm iteratively searches for an improving direction

32

by solving a symmetric linear system (similar to [76, 67]) that approaches the optimal dual

solution. Using the same partitioning techniques of [76, 67], they solve the linear system

without any special techniques. The same authors also implement a specialized analytic

center cutting plane method (ACCPM) [136], a cutting plane method previously intro-

duced in Section 2.3.4 which can be viewed as an interior-point method since it computes

the central point of a polytope in each iteration.

2.7 Convex programming methods

Although this dissertation concentrates on solving the linear MCNF problems, here we

introduce some nonlinear convex programming techniques in the literature ([90] in Section

2.7.2 and [188] in Section 2.7.3 are for LPs). Most of them are related to augmented

Lagrangian methods which find a saddle point of a smooth min-max function obtained by

augmenting the Lagrangian with quadratic terms of both primal and dual variables.

2.7.1 Proximal point methods

Based on their previous work [178], Ibaraki and Fukushima [179] apply a primal-dual proxi-

mal point method to solve convex MCNF problems. The method identifies an approximate

saddle point of the augmented Lagrangian at each iteration and guarantees that these

points converge to the unique Kuhn-Tucker point of the problem. Similar methods are also

developed by Chifflet et al. [75] and Mahey et al. [227].

2.7.2 Alternating direction methods (ADI)

De Leone et al. [90] propose three variants of alternating direction methods (ADI) [209]

which may be viewed as block Gauss-Seidel variants of augmented Lagrangian approaches

that take advantage of block-angular structure and parallelization. These methods take

alternating steps in both the primal and the dual space to achieve optimality. In particular,

ADI is designed to solve the following problem:

min G1(x) + G2(z)

s.t. Cx+ b = Dz

(ADI)

33

For example, let x be the flow vector, z be the proximal vector that reflects the consumption

of the shared capacity, and p be the associated dual variables. The resource proximization

method (RP ADI) uses the following settings: G1(x) :=
∑
k∈K

∑
(i,j)∈A

ckijx
k
ij ; G2(z) := 0 if

∑
k∈K

zkij ≤ uij ∀(i, j) ∈ A, or G2(z) :=∞, otherwise; C := I|A||K|; D := I|A||K|; b := 0 and Λ

is a diagonal penalty matrix whose kth diagonal entry is Λk ∈ (0,∞). Define the augmented

Lagrangian

LkΛ = min
Ñxk=bk

0≤xk
ij≤uij

∑

(i,j)∈A

((ckij + pkij)x
k
ij +

1

2
Λk(x

k
ij − zkij)

2)

where Ñ is the node-arc incidence matrix. Starting with a suitable dual variable p0 ≥ 0

and an initial capacity allocation z0 satisfying
∑
k∈K

zk0 = u, RP ADI iteratively computes

the minimizer xk∗ of LkΛ for each commodity k, updates multiplier p, adjusts the capacity

allocation r, and updates the penalty matrix Λ of Lk
Λ until the termination criterion is met.

Although RP ADI is guaranteed to achieve the optimal objective value, primal feasibility

may not be satisfied.

They also propose two other methods, the activity and resource proximization method

(ARP ADI) and the activity proximation method (AP ADI). Their computational results

show that AP ADI and RP ADI run significantly faster than ARP ADI, and all of them

are faster than the general-purpose LP solver MINOS 5.4 [247]. A similar method is also

developed by Eckstein and Fukushima [99].

2.7.3 Methods of games

Kallio and Ruszczyńsky [188] view the solution procedure to a LP as a nonzero-sum game

with two players. In particular, the primal players minimize the augmented Lagrangian

function for the primal problem and the dual players maximize the augmented Lagrangian

function for the dual problem. Each player optimizes his own objective by assuming the

other’s choice is fixed. They propose a parallel method where processors carry out under-

relaxed Jacobi steps for the players. Based on the same idea of [188], Ouorou [257] solves

monotropic programming problems [271] which minimize a separable convex objective func-

tion subject to linear constraints. He solves convex min-cost MCNF problems using a

34

block-wise Gauss-Seidel method to find an equilibrium of the game in a primal-dual al-

gorithmic framework. These techniques are similar to the alternating direction method

discussed previously.

2.7.4 Other convex and nonlinear programming methods

Nagamochi et al. [249] use the relaxation method of Bertsekas [43, 46], a specialized PD

algorithm, to solve strictly convex MCNF problems.

Lin and Lin [222] solve quadratic MCNF problems by a projected Jacobi method.

They introduce a new dual projected pseudo-quasi-Newton (DPPQN) method to solve the

quadratic subproblems induced in the projected Jacobi method. The DPPQN method com-

putes a fixed-dimension sparse approximate Hessian matrix, which overcomes the difficult

computation of an indefinite-dimension dense Hessian matrix that arises in the conventional

Lagrangian Newton method.

Ouorou and Mahey [258] use a minimum mean cycle cancelling based algorithm [142] to

solve a MCNF problem with a nonlinear separable convex cost function. More techniques

about solving nonlinear convex MCNF problems are introduced in Chapter 8 and Chapter

9 of [45]. For survey on algorithms for nonlinear convex MCNF problems, see Ouorou et

al. [259].

2.8 Methods for integral MCNF problems

All the algorithms introduced before this section are fractional solution methods. Adding

the integrality constraints makes the MCNF problems much harder.

Much research has been done regarding the characterization of integral MCNF prob-

lems. For example, Evans et al. [106] have given a necessary and sufficient condition for

unimodularity in some classes of MCNF problems. Evans makes the transformation from

some MCNF problems to their equivalent uncapacitated SCNF problems [100, 101, 103],

and proposes a specialized simplex algorithm [102] and heuristics [104, 105] for certain

MCNF problems. Truemper and Soun [298, 299, 292] further investigate the topic and

obtain additional results about unimodularity and total unimodularity for general MCNF

35

problems. Other research about the characteristics of quater-integral, half-integral and

integral solutions of MCNF problems can be found in [224, 282, 197, 198].

Aggarwal et al. [1] propose a resource-directive heuristic which first determines an

initial feasible integral capacity allocation for each commodity on each arc, and then per-

forms parametric analysis by varying the right-hand-side and using the corresponding dual

variables to solve knapsack-type problems which determine better allocation for the next

iteration. Their methods produce good integral feasible solutions but may require many LP

computations for the parametric analysis, and thus may not be suitable for large problems.

The general integral MCNF algorithms are usually based on LP-based branch-and-

bound schemes such as branch-and-cut [50, 57] or branch-and-price [34, 35, 13]. In branch-

and-cut, cuts (if possible, facet-inducing ones) are dynamically generated throughout the

branch-and-bound search tree to cut off fractional solutions. On the other hand, branch-

and-price [302, 37] generates variables that are used in conjunction with column generation

to strengthen the LP relaxation and resolve the symmetry effect due to formulations with

few variables. Barnhart et al. [34, 35] apply branch-and-price-and-cut which generates

both variables and cuts during the branch-and-bound procedures to solve binary MCNF

problems in which integral flow must be shipped along one path for each commodity (OD

pair). Alvelos and Carvalho [13] propose another branch-and-price algorithm to solve the

general integral MCNF problems which allows integral flow to be shipped along several

paths for each commodity (OD pair).

2.9 Heuristics for feasible LP solutions

Occasionally, there are problems that need fast and good feasible primal or dual solutions.

Barnhart proposes a dual-ascent heuristic [33] to quickly generate a good feasible dual

solution based on the CS conditions (see Section 2.3.2) Suppose σ∗ is the optimal dual

variable for (2.1) and −π∗ is the optimal dual variable for the bundle constraint (2.2).

Then, (CS.3) implies that the optimal flow should be assigned along shortest paths using

ca + π∗a as the new arc length for arc a, and (CS.1) implies that π∗a > 0 when arc a is

saturated and π∗a = 0 when a is under-capacitated. Thus Barnhart’s heuristic increases πa

36

when a shortest path demand exceeds its capacity ua for arc a, and decreases πa (πa > 0)

when a shortest path demand is less than ua.

The same paper also gives a primal solution generator based on the observation from

(CS.1) that in the optimal solution an arc with a positive dual price should be saturated. So,

the heuristic will try to send flow along the shortest path that contains arcs with positive

dual prices first, and then along the arcs with zero dual prices. In general, this primal

solution generator does not guarantee a feasible primal solution, but it works well in all of

their tests.

2.10 Previous computational experiments

Comprehensive survey papers on solution methods and computational results for MCNF

problems were done more than two decades ago by Assad [15, 17], Ali et al. [10], and

Kennington [201]. All of these surveys suggest that the price-directive methods (DW) out-

perform the resource-directive methods, which are in turn superior to the basis-partitioning

methods. A brief summary of the computational experiments done before 1990 can also be

found in Farvolden et al. [109].

There are some popular MCNF test problems used by many researches for evaluating

efficiency of their algorithms. For example, the Mnetgen family (mnet) created by Ali and

Kennington [11], and the PDS family (PDS) from Carolan et al. [62] which models a patient

distribution system where decisions have to be made in evacuating patients away from a

place of military conflict, are commonly tested. The size of the PDS family depends on the

planning horizon since it is a time-space network.

Chardaire and Lisser [73] implement four algorithms to solving undirected min-cost

MCNF problems up to size |N | = 119, |A| = 302, |K| = 7021 : (1) a simplex method using

the basis-partitioning technique from [202], (2) a dual affine scaling method (DAS), (3)

DW whose master problem is solved by a basis partitioning technique, and (4) an analytic

center cutting plane method (ACCPM) [136]. They compare these four methods with

CPLEX 4.0. The results show that DW is the most efficient implementation, DAS is the

slowest in general, the basis partitioning method performs better than the DAS for smaller

37

cases, and CPLEX 4.0 performs well for smaller cases but worse for larger cases. Similar

undirected message routing problems up to |N | = 100, |A| = 699, |K| = 1244 are solved by

McBride and Mamer [237] who compare (1) EMNET (see Section 2.1), (2) EMNET using

shortest path pricing, and (3) CPLEX 6.5. Their results show that EMNET using shortest

path pricing improves the generic EMNET, which in turn is much faster than CPLEX 6.5.

A similar conclusion is also drawn in another paper by the same authors [229] which tests

more MCNF problems such as PDS, mnet, dmx and JLF (which are all available at the

website maintained by Antonio Frangioni1).

McBride [234] summarizes the computational performance of several MCNF algorithms

(on different platforms), including (1) decomposition methods [266, 311],[283], (2) interior

point methods [62],[225],[231], (3) a primal simplex method with advanced basis [236], and

(4) a simplex method using basis-partitioning technique (EMNET) [233], on specific test

problem sets such as KEN and PDS from the NETLIB library. He concludes that the

basis-partitioning approach is efficient, especially in postprocessing which is often required

in practice. However, the interior-point approaches can take more advantage of multiple

processors operating in parallel.

Castro [67] shows that his specialized interior-point method, IPM, is faster than CPLEX

4.0, which in turn is much faster than PPRN [70]. Castro [66] discusses the empirical

running times of some recent algorithms that have appeared in the last decade, compared

with CPLEX 6.5. In basis-partition codes, EMNET [235] performs similarly to CPLEX 6.5

but better than PPRN [70] for PDS test problems. In price-directive codes, bundle methods

[119] perform similarly to CPLEX 6.5.

Solving the QP test problems from the mnet and PDS families with size up to 500,000

variables and 180,000 constraints, Castro [68] concludes that IPM [67, 68] performs up to

10 times faster than the CPLEX 6.5 barrier solver. Both IPM and the CPLEX 6.5 barrier

solver are much faster than PPRN [70], which in turn is much faster than ACCPM [137].

Despite their excellent theoretical running times, only few approximation algorithms

have been implemented for practical use. [158], [139, 256], and [48] have reported their

1http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html

38

computational experiments. MCMCF, the approximation code in [139, 256], is shown to

be a few magnitudes faster than CPLEX 4.0.9 (dual simplex method) and PPRN [70]

on problems generated by RMFGEN, MULTIGRID, and TRIPARTITE generators (see

[139, 256]). These three problem generators are also used in [48].

Schneur and Orlin [281] compare their scaling algorithm (SAM.M) with other codes DW,

PDN, and PPLP (DW and PDN are from [32], PPLP is from [109]). Their experiments

show that PPLP and SAM.M are faster than DW and PDN on problems up to |N | = 85,

|A| = 204, |K| = 18.

Farvolden et al. [109] compare their basis-partitioining method, PPLP, with MINOS

and OB1 [226] on large-scale LTL networks and show that PPLP outperforms the others

by a large factor.

In [32, 38], Barnhart compares her algorithm PDN to conventional DW decomposition

and two primal-dual (PD) algorithms. It is shown that PDN is more advantageous for large-

scale MCNF problems. In particular, her heuristics can produce good solutions for some

freight assignment problems which the other LP-based methods (DW, PD) can not solve.

Barnhart [33] also develops heuristics which show promising performance in obtaining a fast

and good solution compared to OB1 and OSL [97].

Barnhart et al. [36] experiment with their PATH and CYCLE-RELAX algorithms (they

use the formulation (P PATH) and (RELAX(i)) as introduced in Section 2.3.3)) on message

routing problems which contain many OD commodities. The CYCLE-RELAX algorithm

is much faster than OB1 and OSL on solving problems up to |N | = 324, |A| = 1019,

|K| = 150. When compared with their PATH algorithm, which is the conventional DW

decomposition using column generation, the CYCLE-RELAX algorithm also displays faster

running times on problems up to |N | = 500, |A| = 1300, |K| = 5850. In their later papers

[34, 35], they solve binary MCNF problems up to |N | = 50, |A| = 130, |K| = 585. Their

simple cycle heuristic that generates all the simple cycles from the symmetric difference

between the shortest path and key path has shown to be very effective. In particular, the

time to solve the LPs and the number of iterations of generating columns have been reduced

by an average of 40% and 45% respectively, but the total number of columns generated is

39

not increased. This means the simple cycle heuristic helps to generate good columns in

fewer iterations, which shortens the overall computational time. Therefore, we will also

incorporate this simple cycle heuristic in our proposed algorithm in Chapter 6.

2.11 Summary

We have introduced and summarized most of the methods in the literature for solving the

MCNF problems. Different solution techniques may be advantageous for different MCNF

problems depending on the problem characteristics. This dissertation focuses on solving

the class of MCNF problems in which many OD commodities have to be routed. Therefore,

the algorithms by Barnhart et al. [36, 34, 35] seem to be most suitable for our purpose.

In Chapter 6, we will propose new primal-dual column generation algorithms which follow

the PD algorithmic framework. We will also exploit the ideas from the CYCLE-RELAX

algorithm.

In our algorithms (see Chapter 6), subproblems which seek shortest paths between mul-

tiple pairs must be repeatedly solved. Therefore, efficient multiple pairs shortest paths

(MPSP) algorithms will speed up the overall computational efficiency of our MCNF algo-

rithms. We introduce several shortest path algorithms in Chapter 3, give our own new

MPSP algorithms in Chapter 4, and describe their computational performance in Chap-

ter 5. We will introduce our MCNF algorithms and their computational performance in

Chapter 6.

40

