
CHAPTER III

SHORTEST PATH ALGORITHMS: 1-ALL, ALL-ALL,

AND SOME-SOME

In this thesis, we focus on solving ODMCNF, a class of min-cost MCNF problems where

the commodities represent origin-destination (OD) pairs.

As introduced in Section 2.3.2, when we use Dantzig-Wolfe decomposition and column

generation to solve ODMCNF, we generate new columns by solving sequences of shortest

path problems for specific commodities (OD pairs) using c+π∗ as the new arc lengths where

c is the original arc cost vector and −π∗ is the optimal dual solution vector associated with

the bundle constraint after we solve the RMP. Since the RMP changes at each iteration

of the DW procedures, π∗ will also change. Therefore, the shortest paths between specific

OD pairs have to be repeatedly computed with different arc costs on the same network.

Efficient shortest path algorithms will speed up the overall computational time needed to

solve the ODMCNF.

In this chapter, we first survey shortest path algorithms that have appeared in the liter-

ature, and then discuss the advantages and disadvantages of these shortest path algorithms

in solving multiple pairs shortest path problems. Finally, we introduce a new shortest path

algorithm based on a new LP solution technique that follows the primal-dual algorithmic

framework to solve sequences of nonnegative least squares (NNLS) problems, and show its

connection to the well-known Dijkstra’s algorithm.

3.1 Overview on shortest path algorithms

During the last four decades, many good shortest path algorithms have been developed.

We can group shortest path algorithms into 3 classes:

• those that employ combinatorial or network traversal techniques such as label-setting

methods, label-correcting methods and their hybrids

41

• those that employ Linear Programming (LP) based techniques like primal network

simplex methods and dual ascent methods

• those that use algebraic or matrix techniques such as Floyd-Warshall [113, 304] and

Carré’s [64, 65] algorithms.

The first two groups of shortest path algorithms are mainly designed to solve the Single

Source (or Sink) Shortest Path (SSSP) problem, which is the problem of computing the

shortest path tree (SPT) for a specific source (or sink) node. Algebraic shortest path

algorithms, on the other hand, are more suitable for solving the All Pairs Shortest Paths

(APSP) problem, which is the problem of computing shortest paths for all the node pairs.

3.2 Notation and definition

For a digraph G := (N,A) with n = |N | nodes and m = |A| arcs, a measure matrix C is

the n × n matrix in which element cij denotes the length of arc (i, j) with tail j and head

i. cij :=∞ if (i, j) /∈ A. A walk is a sequence of r nodes (n1, n2.., nr) composed of (r − 1)

arcs, (nk−1, nk), where 2 ≤ k ≤ r and r ≥ 2. A path is a walk without repeated nodes so

that all nk are different. A cycle is a walk where all nk are different except that the starting

and ending nodes are the same; that is, n1 = nr. The length of a path (cycle) is the sum

of lengths of its arcs. When we refer to a shortest path tree with root t, we mean a tree

rooted at a sink node t where all the tree arcs point towards to t.

The distance matrix X is the n× n array with element xij as the length of the shortest

path from i to j. Let [succij] denote the n× n successor matrix. That is, succij represents

the node that immediately follows i in the shortest path from i to j. We could construct

the shortest path from i to j by tracing the successor matrix. In particular, the shortest

path from i to j is i → k1 → k2 → . . . → kr → j, where k1 = succij , k2 = succk1j , . . . ,

kr = succkr−1j , and j = succkrj . If node i has a successor j, we say node i is the predecessor

of node j. Let x∗ij and succ∗ij denote the shortest distance and successor from i to j in G.

We say that node i is higher (lower) than node j if the index i > j (i < j). A node i is

said to be the highest (lowest) node in a node set LIST if i ≥ k (i ≤ k) ∀ k ∈ LIST (see

Figure 4 in Section 4.1).

42

For convenience, if there are multiple arcs between a node pair (i, j), we choose the

shortest one to represent arc (i, j) so that cij in the measure matrix is unique without

ambiguity. If there is no path from i to j, then xij =∞.

Given two arcs (s, k) and (k, t), a triple comparison s→ k → t compares csk + ckt with

cst. A fill-in happens when there is no arc (s, t) (i.e., cst = ∞) but the triple comparison

s→ k → t makes csk + ckt <∞.

Path algebra is an ordered semiring (S,⊕,⊗, e, ∅,¹), with S = R∪{∞} and two binary

operations defined as in Table 5.

Table 5: Path algebra operators

generalized addition (⊕) a⊕ b = min{a, b}
generalized multiplication(⊗) a⊗ b = a+ b

∀a, b ∈ S

unit element e has value 0
null element ∅ has value ∞
the ordering ¹ is the usual ordering (≤) for real numbers.

Path algebra obeys the commutative, associative and distributive axioms. (See [108, 65,

21, 63, 274, 275] for details.) We can also define generalized addition (⊕) and generalized

multiplication (⊗) of matrices with elements in S as follows: Suppose A,B,C,D ∈ Sn×n,

where A = [aij], B = [bij], then A ⊕ B = C, and A ⊗ B = D satisfy cij = aij ⊕ bij and

dij =
n∑

k=1

(aik ⊗ bkj), where the symbol
∑

denotes a generalized addition.

Many shortest path algorithms in the literature can be viewed as methods for solving

the linear systems defined on the path algebra, and will be reviewed in Section 3.4.

3.3 Single source shortest path (SSSP) algorithms

The Single Source (or Sink) Shortest Path (SSSP) problem determines the shortest path

tree (SPT) for a specific source (or sink) node. SSSP algorithms in the literature can be

roughly grouped into two groups: (1) Combinatorial algorithms which build the SPT based

on combinatorial or graphical properties. (2) LP-based algorithms which view the SPT

problem as a LP problem and solve it by specialized LP techniques.

In this section we also introduce a new algorithm of Thorup and give a summary of

43

previous computational experiments for many SSSP algorithms.

3.3.1 Combinatorial algorithms

The basic idea of the combinatorial SSSP algorithms is that, creating a node bucket (named

LIST, usually initiated by the root node), the algorithms select a node from LIST, scan the

node’s outgoing arcs, update the distance labels for the endnodes of these outgoing arcs, put

the updated nodes into LIST, and then choose another node from LIST. The procedures

repeat until LIST becomes empty.

The differences between combinatorial shortest path algorithms are in the ways of main-

taining node candidates to be scanned from LIST. Many sophisticated data structures have

been used to improve the time bounds.

Label-setting methods, first proposed by Dijkstra [95] and Dantzig [85], choose the node

with the smallest distance label. Methods that use special data structures to quickly choose

the min-distance-label node have been developed. These data structures include the binary

heap of Johnson [186], Fibonacci heap of Fredman and Tarjan [121], Dial’s bucket [93], and

radix heap of Ahuja et al. [4]. Many other complicated bucket-based algorithms have been

suggested in the long computational survey paper by Cherkassky et al. [74].

On the other hand, label-correcting methods, first proposed by Ford [114], Moore [243],

Bellman [40] and Ford and Fulkerson [117], have more flexibility in choosing a node from

LIST. These data structures include the queue of Bellman [40], dequeue of Pape [264] and

Levit [220], two-queue of Pallottino [260], dynamic bread-first-search of Goldfarb et al. [146],

small-label-first (SLF) or large-label-last (LLL) of Bertsekas [44], and topological ordering

of Goldberg and Radzik [140]. Yen [308] also gives another special node scanning procedure

which eliminates approximately half of the node label updating operations of Bellman’s

algorithm.

Some efficient label-correcting algorithms [264, 220, 260, 140] are based on the following

heuristic: suppose a node i in LIST has been scanned in previous iterations, and some of its

successors, say, nodes il, . . . , ik, are also in LIST. Then it is better to choose node i to scan

before choosing nodes il, . . . , ik. The rationale is, if node il, a successor of node i, is chosen

44

before node i to scan, then later when node i is updated and scanned, node il will have

to be reupdated. Thus choosing node i rather than choosing any of its successors tends to

save label updating operations. However, such heuristics may not guarantee a polynomial

time algorithm. For example, the dequeue implementation of [264, 220] is very efficient

in practice but has a pseudopolynomial theoretical running time. The other algorithms

[260, 140] guarantee polynomial time bounds, but perform worse in practice.

The threshold algorithm of Glover et al. [134] combines techniques from both label-

setting and label-correcting algorithms. In particular, the algorithm maintains two queues:

NEXT and NOW. Nodes are put into NOW from NEXT if their distance label are less

than the threshold, and the algorithm scans nodes in NOW and puts new nodes to NEXT.

After NOW is empty, a new threshold is set and the algorithm iterates until finally NEXT

becomes empty. The performance of this algorithm is sensitive to the way of adjusting

threshold value; thus a fine-tuning procedure may be required to achieve better efficiency.

Although label-setting methods have more favorable theoretical time bounds than label-

correcting methods, their overhead in sorting the node candidates may worsen their empir-

ical performance, especially for sparse networks. The current best time bound of combina-

torial algorithms to solve SSSP is O(min{m+ n logn, m log logC, m+ n
√
logC) obtained

by [121],[184] and [4] for cases with nonnegative arc lengths, and O(mn) by most label-

correcting algorithms for cases with general arc lengths and no negative cycles (see Chapter

4 and Chapter 5 of [3]).

3.3.2 LP-based algorithms

Suppose we are solving an ALL-1 shortest path problem which determines a SPT rooted at

sink node t. This ALL-1 SSSP can be formulated as the following LP:

min
∑

(i,j)∈A

cijxij = ZP∗
ALL−1(x) (SSSP)

s.t.
∑

(i,j)∈A

xij −
∑

(j,i)∈A

xji = bi =





1 , if i 6= t

−(n− 1) , if i = t
∀i ∈ N (3.1)

xij ≥ 0 ∀(i, j) ∈ A

45

In particular, the problem can be viewed as if every node other than t (a total of n−1 nodes)

sends one unit of flow to satisfy the demand (n − 1) of the root node t. The constraint

coefficient matrix of (3.1) is the node-arc incidence matrix Ñ introduced in Section 1.2.

It is totally unimodual and guarantees that the LP solution of SSSP will be integral due

to the integral right hand side. Moreover, because there exists a redundant constraint in

SSSP, we can remove the last row of (3.1) to get a new coefficient matrix N and obtain the

following new LP:

min cx = ZP∗
ALL−1(x) (ALL-1-Primal)

s.t. Nx = 1 ∀i ∈ N \ t (3.2)

x ≥ 0

whose dual is

max
∑

i∈N\t

πi = ZD∗
ALL−1(π) (ALL-1-Dual)

s.t. πi − πj ≤ cij ∀(i, j) ∈ A, i, j 6= t (3.3)

πi ≤ cit ∀(i, t) ∈ A (3.4)

−πj ≤ ctj ∀(t, j) ∈ A (3.5)

This LP thus can be solved by a specialized simplex method, usually called the network

simplex method.

In network simplex method, a tree corresponds to a basis, and each dual variable πi

corresponds to a distance label associated with node i (thus πt = 0). Let the reduced cost

associated with an arc (i, j) be cπij = cij − πi + πj . Then starting from the root r, we can

set π such that every tree arc has zero reduced cost.

Primal network simplex starts with a spanning tree T (t) rooted at t which can easily be

constructed by any tree-search algorithm, and then identifies some non-tree arc (u, v) with

cπuv < 0. Adding (pivoting in) the non-tree arc (u, v) to the tree T (t) will create a cycle

with negative reduced cost. The algorithm sends flow along the cycle, identifies (pivots

out) a tree arc (u,w) to become a non-tree arc [145], and updates the duals associated

46

with the subtree rooted at node u so that the reduced cost for all tree arcs remains 0. The

algorithm iterates these procedures until no more non-tree arc has negative reduced cost,

which means optimality has been achieved. Notice that in each iteration, the objective is

strictly improved, which means each iteration is a nondegenerate pivot.

In fact, the label-setting and label-correcting methods in Section 3.3.1 can be viewed

as variants of primal network simplex methods [94]. In particular, if we add artificial

arcs which have a very large cost M from all the other nodes to the root t, the primal

network simplex method which chooses the most negative reduced cost non-tree arc will

correspond to the Dijkstra’s algorithm. The label-correcting methods may be viewed as

”quasi-simplex” algorithms since they identify a profitable non-tree arc, but only update

the dual for one node instead of all the nodes in its rooted subtree. Dial et al. [94] suggests

that the superiority of the ”quasi-simplex” methods to the ”full-simplex” methods is caused

by the extra overhead involved in maintaining and updating the data structures in the ”full-

simplex” method. Indeed, the label-correcting methods have more pivots but each pivot is

cheap to accomplish, while the primal network simplex methods have fewer pivots but each

pivot involves more operations.

Goldfarb et al. [145] propose an O(n3) primal network simplex algorithm. The current

fastest network simplex based SSSP algorithm is by Goldfarb and Jin [148] which has time

bound O(mn) and is as fast as the best label-correcting algorithms.

Several dual ascent algorithms [261] such as auction algorithms [47, 45, 71] and relaxation

algorithms [45] have been proposed. The Dijkstra’s algorithm can also be viewed as a primal-

dual algorithm (See Section 5.4 and Section 6.4 of [263]). We will discuss in more detail

the connection between three algorithms, Dijkstra’s algorithm, primal-dual algorithm, and

a new method called least squares primal-dual method (LSPD), in Section 3.6 later on.

In practice, the LP-based algorithms tend to perform worse than the combinatorial

algorithms for solving SSSP [94, 58, 212].

47

3.3.3 New SSSP algorithm

Recently, Thorup [295, 296] proposed a deterministic linear time and space algorithm to

solve the undirected SSSP for graphs with either integral or floating point nonnegative arc

lengths on a random access machine (RAM). Based on Thorup’s algorithm, Pettie and

Ramachandran [265] use the minimum spanning tree structure to create a new algorithm

on a pointer machine for the undirected SSSP with nonnegative floating point arc lengths.

Their algorithm will have a better time bound of O(m+n log log n) as long as the maximal

ratio of any two arc lengths is small enough. These new algorithms, although shown to

have good worst-case complexity, may be practically inefficient [14].

3.3.4 Computational experiments on SSSP algorithms

Extensive computational survey papers on SSSP algorithms have been written comparing

the efficiency of the label-correcting, label-setting and hybrid methods on both artificially

generated networks [260, 134, 135, 173, 96, 241, 74] and real road networks [312].

According to Cherkassky et al. [74], no single best algorithm exists for all classes of short-

est path problems. They observed a double bucket implementation of Dijkstra’s algorithm

named DIKB and a label-correcting method named GOR1 which uses a topological-scan idea

to be robust for most of their test cases. Zhan and Noon [312], using the same set of codes

as Cherkassky et al., concluded that PAPE and TWO Q, two variants of label-correcting

methods, perform best on real road networks. They also recommend DIKA, a Dijkstra

approximate buckets implementation, for cases with smaller arc lengths, and DIKB, which

is more favorable for cases with larger arc lengths.

3.4 All pairs shortest path (APSP) algorithms

The All Pairs Shortest Path (APSP) problem determines the shortest paths between every

pair of nodes. Obviously, it can be solved by n SSSP algorithms, one for each node as the

root. Also, it can be solved by the LP reoptimization techniques which we will discuss in

more detail in Section 3.5.2. In this section, we focus on algebraic algorithms based on the

path algebra introduced in Section 3.2.

48

The optimality conditions of APSP are

xij =





min
k 6=i,j

(cik + xkj) for i 6= j

0 for i = j

That is, suppose we know xkj , the shortest distance from all other nodes k to j. Then, the

shortest distance from i to j, xij , can be computed by choosing the shortest path among

all possible paths from i to j via any node k. In fact, this is the well-known Bellman’s

equation. Using path algebra, Bellman’s equation for solving APSP can be rewritten as

X = CX ⊕ In (3.6)

where In denotes an n × n identity matrix with 0 as the diagonal entries and ∞ as the

off-diagonal entries.

It can be shown (see [65]) that (3.6) has a unique solution X∗ if G has no cycles of zero

length. An extremal solution X∗ for (3.6) can be obtained recursively as

X∗ = In ⊕ CX

= In ⊕ C(In ⊕ CX) = In ⊕ C ⊕ C2(In ⊕ CX)

= In ⊕ C ⊕ C2 ⊕⊕ Cn−1 ⊕ Cn ⊕ ...

= In ⊕ (In ⊕ C)⊕ (In ⊕ C2)⊕⊕ (In ⊕ Cn−1)⊕ (In ⊕ Cn)⊕ ...

= In ⊕ (In ⊕ C)⊕ (In ⊕ C2)⊕⊕ (In ⊕ Cn−1)

= In ⊕ C ⊕ C2 ⊕⊕ Cn−1

= (In ⊕ C)n−1 (3.7)

In particular, the (i, j) entry of Ck, represents the shortest distance from i to j using

paths containing at most k arcs. That is, the shortest distance from node i to node j can

be obtained by the length of a shortest directed path from i to j using at most n− 1 arcs

assuming no cycles with negative length [291].

Since we are only interested in the shortest path (not cycle) lengths, the generalized

addition (In⊕Ck) will zero all the diagonal entries of Ck while retaining all the off-diagonal

ones. The properties (In ⊕ Ck) = (In ⊕ Cn−1) for k ≥ n and A ⊕ A = A are used in the

49

above derivation. They hold because we assume there are no negative cycles, and any path

in G contains at most n− 1 arcs.

Now we will review APSP algorithms that solve Bellman’s equations (3.6), and then

summarize APSP methods that involve matrix multiplications.

3.4.1 Methods for solving Bellman’s equations

The APSP problem can be interpreted as determining the shortest distance matrix X that

satisfies Bellman’s equations (3.6). Techniques analogous to the direct or iterative methods

of solving systems of linear equations thus could be used to solve the APSP problem. In

particular, direct methods such as the Gauss-Jordan and Gaussian elimination correspond

to the well-known Floyd-Warshall [113, 304] and Carré’s [64, 65] algorithms, respectively.

Iterative methods like the Jacobi and Gauss-Seidel methods actually correspond to the

SSSP algorithms by Bellman [40] and Ford [117], respectively (see [65] for proofs of their

equivalence). The relaxation method of Bertsekas [45] can also be interpreted as a Gauss-

Seidel technique (see [261]).

Since the same problem can also be viewed as inverting the matrix (In−C), the escalator

method [244] for inverting a matrix corresponds to an inductive APSP algorithm proposed

by Dantzig [87]. Finally, the decomposition algorithm proposed by Mill [240] (also, Hu

[172]) decomposes a huge graph into parts, solves APSP for each part separately, and then

reunites the parts. This resembles the nested dissection method (see Chapter 8 in [98]), a

partitioning or tearing technique to determine a good elimination ordering for maintaining

sparsity, when solving a huge system of linear equations. All of these methods (except the

iterative methods) have O(n3) time bounds and are believed to be efficient for dense graphs.

Here, we review the algorithm proposed by Carré [64], which corresponds to Gaussian

elimination. This algorithm is seldom referred to in the literature. We are more interested

in this algorithm because it inspires us to develop our new MPSP algorithms in Chapter 4.

3.4.1.1 Carré’s algorithm

The Gaussian elimination-like APSP algorithm proposed by Carré contains three phases:

one LU decomposition procedure and n successive forward/backward operations. Suppose

50

we first solve an ALL-1 shortest path tree rooted at a sink node t, and then repeat the

same procedures for different sink nodes to solve the APSP problem. The reason for such

unconventional notation (solving ALL-1 instead of 1-ALL shortest path problems) is that

we usually solve for a column vector (corresponding to an ALL-1 distance vector) when we

solve a system of linear equations. Here the tthcolumn in the distance matrix represents an

ALL-1 shortest path tree rooted at a sink node t.

Algorithm 1 Carré

begin

Initialize: ∀ s, xss := 0 and succss := s;
∀(s, t), if (s, t) ∈ A then

xst := cst; succst := t;
else xst :=∞ ; succst := 0;

LU ;
for each sink node t do

Forward(t);
Backward(t);

end

There are three procedures: LU , Forward(t), and Backward(t).

Procedure LU

begin

for k = 1 to n− 2 do
for s = k + 1 to n do

for t = k + 1 to n do
if s 6= t and xst > xsk + xkt then

xst := xsk + xkt; succst := succsk;
end

Procedure LU : The LU procedure is analogous to the LU decomposition in Gaussian

elimination. That is, using node k, whose index is smaller than both s and t, as an inter-

mediate node, if the current path from s to t is longer than the joint paths from s to k and

k to t, we update xst and its associated successor index. In particular, a shorter path from

s to t is obtained by joining the two paths from s to k and from k to t.

In terms of algebraic operations, let lst and ust denote the (s, t) entry in the lower

and upper triangle of X, respectively. The LU procedure is simply the variant of LU

decomposition in Gaussian elimination. In particular, first we initialize them as lst := cst ∀

51

s > t, ust := cst ∀ s < t. Then the procedures compute

lst := lst ⊕
t−1∑
k=1

(lsk ⊗ ukt)

uts := uts ⊕
t−1∑
k=1

(ltk ⊗ uks)

for t = 2, . . . , (n− 1) and s = (t+ 1), . . . , n

The complexity of LU is O(n3). For a complete graph with n nodes, this procedure will

perform exactly
n−2∑
k=1

n∑
s=k+1

n∑
t=k+1

j 6=i

(1) = n(n−1)(n−2)
3 triple comparisons.

Procedure Forward(t)
begin

for s = t+ 2 to n do
for k = t+ 1 to s− 1 do

if xst > xsk + xkt then
xst := xsk + xkt; succst := succsk;

end

Procedure Forward(t) : For any sink node t, Forward(t) is a procedure to obtain

shortest paths from higher nodes to node t on G′
L, the induced subgraph representing the

lower triangular part of X obtained after LU .

In terms of algebraic operations, this procedure is the same as solving L⊗ y = b, where

the right hand side b is the tth column of the identity matrix In. First we initialize ys := bs

∀ s. Then

ys := bs ⊕
s−1∑

k=t

(lsk ⊗ yk), for s = (t+ 1), . . . , n

The complexity of Forward(t) is O(n2). For a complete graph with n nodes, this procedure

will perform exactly
n−2∑
t=1

n∑
s=t+2

s−1∑
k=t+1

(1) = n(n−1)(n−2)
6 triple comparisons in solving APSP.

Procedure Backward(t)
begin

for s = n− 1 down to 1 do
for k = s+ 1 to n do

if xst > xsk + xkt then
xst := xsk + xkt; succst := succsk;

end

52

Procedure Backward(t) : For any sink node t, Backward(t) is a procedure that com-

putes shortest paths from all nodes to node t on G′
U , the induced subgraph representing

the upper triangular part of X obtained after LU .

In terms of algebraic operations, this procedure is the same as solving U ⊗x = y, where

the right hand side y is the solution to the previous operation, L⊗ y = b. First we initialize

xs := ys ∀ s. Then

xn−s := yn−s ⊕
n∑

k=n−s+1

(un−s,k ⊗ xk), for s = 1, . . . , (n− 1)

The complexity of Backward(t) is O(n2). For a complete graph with n nodes, this procedure

will perform exactly
n∑
t=1

n−1∑
s=1
s6=t

n∑
k=s+1

k 6=t

(1) = n(n−1)(n−2)
2 triple comparisons in solving APSP.

More about Carré’s algorithm : Table 6 is an example that illustrates how Carré’s

algorithm performs the triple comparisons (s → k → t) to solve an APSP problem for a

4-node complete graph.

Table 6: Triple comparisons of Carré’s algorithm on a 4-node complete graph

LU
s→ k → t, k < s, t

k = 1 k = 2

2→1→3
2→1→4
3→1→2
3→1→4 3→2→4
4→1→2
4→1→3 4→2→3

Forward(t)
s→ k → t, s > k > t

t = 1 t = 2 t = 3 t = 4

3→2→1 4→3→2
4→3→1
4→2→1

Backward(t)

s→ k → t, k > s

t = 1 t = 2 t = 3 t = 4

3→4→1 3→4→2 2→4→3 2→3→4
2→4→1 1→3→2 1→2→3 1→2→4
2→3→1 1→4→2 1→4→3 1→3→4

Carré gave an algebraic proof of the correctness and convergence of his algorithm. He

also gave a graphical interpretation of his algorithm in [64].

Carré’s algorithm has several good properties compared with other algebraic APSP

algorithms. First, it performs the least number of triple comparisons, n(n − 1)(n − 2), for

complete graphs as shown by Nakamori [251]. The Floyd-Warshall algorithm performs the

53

same number of triple comparisons but uses a different ordering. Second, it decomposes

the APSP into n shortest path trees, one for each sink node. Therefore, it can save many

operations depending on the number of sink nodes in the MPSP problem. The Floyd-

Warshall algorithm, on the other hand, has to do triple comparisons over the entire distance

matrix.

3.4.1.2 Direct methods vs. iterative methods

Sparsity and stability are the two major concerns in solving linear systems. It is a well-

known fact in numerical algebra that iterative methods usually converge faster but are

more numerically unstable (i.e. affected by rounding errors) than direct methods. However,

the operators in path algebra only involve comparison and addition; thus the numerical

instability is not a concern in solving Bellman’s equations in path algebra. This may

explain why iterative methods such as label-correcting methods, instead of direct methods

such as Floyd-Warshall or Carré’s algorithms, are still the most popular methods used to

solve either SSSP or APSP problems.

In this thesis, we investigate ways of improving the direct methods to exploit sparsity

and make them competitive with the popular label-correcting methods.

3.4.2 Methods of matrix multiplication

As derived in equation (3.7), Shimbel [291] suggests a naive algorithm using log(n) matrix

squarings of (In⊕C) to solve the APSP problem. To avoid many distance matrix squarings,

some O(n3) distance matrix multiplication methods such as the revised matrix [171, 306]

and cascade [108, 211, 306] algorithms perform only two or three successive distance matrix

squarings. However, Farbey et al. [108] show that these methods are still inferior to the

Floyd-Warshall algorithm which only needs a single distance matrix squaring procedure.

Aho et al. (see [2], pp.202-206) show that computing (In ⊕ C)n−1 is as hard as a

single distance matrix squaring, which takes O(n3) time. Fredman [122] proposes an

O(n2.5) algorithm to compute a single distance matrix squaring, but it requires a pro-

gram of exponential size. Its practical implementation, improved by Takaoka [293], still

takes O(n3((log logn)/ log n)
1

2) which is just slightly better. Recently, much work has been

54

done in using block decomposition and fast matrix multiplication techniques to solve the

APSP problem. These new methods, although they have better subcubic time bounds,

usually require the arc lengths to be either integers of small absolute value [12, 294, 313]

or can only be applied to unweighted, undirected graphs [284, 126, 125]. All of these ma-

trix multiplication algorithms seem to be more suitable for dense graphs since they do not

exploit sparsity. Their practical efficiency remains to be evaluated.

3.4.3 Computational experiments on APSP algorithms

To date, no thorough computational analysis on solving the APSP problem has been re-

ported. It is generally believed, however, that the algebraic algorithms require more com-

putational storage and are more suitable for dense graphs, but are unattractive for graphs

with large size or sparse structure (as is the case in most real world applications).

None of those matrix-multiplication algorithms has been implemented, despite their

better complexity. The Floyd-Warshall algorithm is the most common algebraic APSP

algorithm, but it can not take advantage of sparse graphs. On the other hand, Gaussian

elimination is shown to be more advantageous than Gauss-Jordan elimination in dealing

with sparse matrix [22]. This suggests that a sparse implementation of Carré’s algorithm,

rather than a sparse Floyd-Warshall algorithm, may be practically attractive.

Goto et al. [150] implement Carré’s algorithm [65] sparsely using code generation tech-

niques. The problem they faced is similar to ours. In particular, for a graph with fixed

topology, shortest paths between all pairs must be repeatedly computed with different nu-

merical values of arc lengths. To take advantage of the fixed sparse structure, they used a

preprocessing procedure which first identifies a good node pivoting order so that the fill-ins

in the LU decomposition phase are decreased. They then run Carré’s algorithm once to

record all the nontrivial triple comparisons in the LU decomposition, forward elimination

and backward substitution phases. Based on the triple comparisons recorded in the prepro-

cessing procedure, they generate an ad hoc shortest path code specifically for the original

problem. Excluding the time spent in the preprocessing and code-compiling phases, this ad

hoc code seems to perform very well, up to several times faster than other SSSP algorithms

55

they tested, on the randomly generated grid graphs.

In fact, the attractive performance of Goto’s implementation may be misleading. First,

the largest graph they tested, a 100-node 180-arc grid graph, is not as large as many real-

world problems. For larger graphs, the code generated may be too large to be stored or

compiled. Second, their experiments were conducted in 1976, since which time many good

SSSP algorithms and efficient implementations have been proposed. However, their sparse

implementations intrigued us and convinced us to further investigate ways of improving

algebraic shortest path algorithms for solving shortest paths between multiple node pairs.

3.5 Multiple pairs shortest path algorithms

The ODMCNF usually contains multiple OD pairs. Thus we will focus on solving the

Multiple Pairs Shortest Path (MPSP) problem, which is to compute the shortest paths for

q specific OD pairs (si, ti), i = 1 . . . q. Let |s| (|t|) denote the number of distinct source

(sink) nodes.

Obviously the MPSP problem can be solved by simply applying an SSSP algorithm

q̂ times, where q̂ = min{|s|, |t|} (we call such methods repeated SSSP algorithms), or by

applying an APSP algorithm once and extracting the desired OD entries. Both of these

methods can involve more computation than necessary. To cite an extreme example, suppose

that we want to obtain shortest paths for n OD pairs, (si, ti), i = 1 . . . n, which correspond

to a matching. That is, each node appears exactly once in the source and sink node set but

not the same time. For this specific example, we must apply an SSSP algorithm exactly n

times, which is as hard as solving an APSP problem. Such ”overkill” operations may be

avoided if we use label-setting methods, since it suffices to terminate once all the destination

nodes are permanently labeled. To do this, extra storage and book-keeping procedures are

required. On the other hand, using the Floyd-Warshall algorithm, we still need to run

until the last iteration to get all n OD entries. Either way we waste some time finding the

shortest paths of many unwanted OD pairs.

In this section, we first review related methods appearing in the literature, and then

briefly introduce our methods.

56

3.5.1 Repeated SSSP algorithms

Due to the simplicity and efficiency of the state-of-the-art SSSP algorithms, the MPSP

problem is usually solved by repeatedly applying an SSSP algorithm q̂ times, once for each

source (or sink) node.

Theoretically, label-setting algorithms might be preferred due to their better time bounds.

For cases with general arc lengths, we can (see [252, 183, 127]) first use a label-correcting

algorithm to obtain a shortest path tree rooted at same node r, and then for each arc

(i, j) we transform the original arc length cij to cπij = cij + di − dj , where di denotes the

shortest distance from r to i. The nonnegative transformed arc length cπij corresponds to

the reduced cost in the LP. We then are able to repeatedly use the label-setting algorithm

for the remaining (q̂ − 1) SSSP problems.

Although this method has better theoretical time bounds, as argued in section 3.3.1,

there is no absolute empirical superiority between label-setting and label-correcting meth-

ods. Therefore, whether it pays to do the extra arc length transformation, or simply apply

a label-correcting method q̂ times, is still quite debatable.

3.5.2 Reoptimization algorithms

The concept of reoptimization can be useful in two aspects: (1) when a MPSP problem must

be solved with different arc lengths, and (2) when a shortest path tree must be calculated

based on a previous shortest path tree.

After we have obtained a shortest path tree, suppose there are k arcs whose lengths have

been changed. For cases involving only a decreasing-length-modification of some arcs, Goto

and Sangiovanni-Vincentelli [151] proposed an O(kn2) algebraic algorithm that resembles

the Householder formula for inverting modified matrices. Fujishige [123] gave another algo-

rithm based on Dijkstra’s algorithm which requires less initial storage than Goto’s, but can

not deal with cases that have negative arc lengths. For more general cases in which some

arc lengths might increase, only LP algorithms such as primal network simplex methods

have been proposed to attack such problems.

LP reoptimization techniques may also be advantageous for solving the MPSP problem.

57

For example, suppose we have obtained a shortest path tree rooted at r, and now try

to obtain the next shortest path tree rooted at s. Dual feasibility will be maintained

when switching roots, since the optimality conditions guarantee that the reduced cost, cπij ,

remains nonnegative for each arc (i, j). We may thus use the current shortest path tree as

an advanced basis to start with, and apply any dual method (e.g. the dual simplex method

by Florian et al.[112], or the dual ascent method by Nguyen et al. [253]) to solve the newly

rooted SSSP problem. The same problem may be solved by adding an artificial arc with

long length from s to r while deleting the previous tree arc pointing toward s. Then, a

primal network simplex method can be applied since primal feasibility is maintained.

These reoptimization methods exploit the advanced initial basis obtained from the pre-

vious iteration. Also, if the new root s is close to the old root r, many of the previous

shortest path tree arcs might remain in the newly rooted shortest path tree.

Florian et al. [112] reported up to a 50% running time reduction in several test problems

when compared with Dial’s and Pape’s algorithms (implemented in [94]). More recently,

Burton [58] reported that Florian’s algorithm runs faster than Johnson’s algorithm (a re-

peated SSSP algorithm, see [183]) only when s is reachable by at most two arcs from r. In

all other cases Johnson’s algorithm outperforms Florian’s.

More computational analysis of the MPSP problem is still required to draw a conclusion

on the empirical dominance between these reoptimization algorithms and the repeated state-

of-the-art SSSP algorithms.

3.5.3 Proposed new MPSP algorithms

It is easy to see that repeated SSSP algorithms are more efficient for MPSP problems with

few sources (i.e. q̂ ¿ n). For cases with many sources, are the repeated SSSP algorithms

still superior in general? Can we modify an APSP algorithm so that it runs faster on MPSP

problems, is competitive in solving MPSP problems on sparse graphs, and takes advantage

of special properties of MPSP problems such as fixed topology or requested OD pairs?

Chapter 4 and Chapter 5 try to answer these questions.

We propose two new algebraic shortest path algorithms based on Carré’s algorithm

58

[64, 65] in Chapter 4. Like other algebraic APSP algorithms, our algorithms can deal with

negative arc lengths. Even better, our algorithms can save half of the storage and running

time for undirected or acyclic graphs, and avoid unnecessary operations that other algebraic

APSP algorithms must do when solving MPSP problems.

To verify their empirical performance, in Chapter 5, we compare our codes with the

state-of-the-art SSSP codes written by Cherkassky et al. [74] on artificial networks from

four random network generators.

3.6 On least squares primal-dual shortest path algorithms

The least squares primal-dual (LSPD) algorithm [28] is a primal-dual algorithm for solving

LPs. Instead of minimizing the sum of the absolute infeasibility to the constraints when

solving the restricted primal problem (RPP) as does the conventional primal-dual algorithm,

LSPD tries to minimize the sum of the squares of the infeasibility.

In particular, Leichner et al. [216] propose a LP phase I algorithm that strictly improves

the infeasibility in each iteration in order to solve the following feasibility problem:

Ex = b, x ≥ 0.

In stead of using the conventional simplex phase I method that solves

min |b− Ex|

s.t. x ≥ 0,

they seek solutions to a special case of the bounded least-squares problem (BLS) called the

non-negative least-squares problem (NNLS) formulated as follows:

min ‖b− Ex‖2 (NNLS)

s.t. x ≥ 0.

Similar algorithms have been proposed by Dantzig [86], Björck [54, 55], Van de Panne

and Whinston [301], Lawson and Hanson [214], and Goldfarb and Idanani [147]. Recently,

Gopalakrishnan et al. [149, 28, 30, 29] give variants of LSPD algorithms to solve several

59

classes of LP and network problems. Since the algorithm is impervious to degeneracy,

it is considered to be efficient in solving highly degenerate problems such as assignment

problems. Their computational experiments show that LSPD terminates in much fewer

iterations than CPLEX network simplex and Hungarian method in solving the assignment

problems.

The bottleneck of LSPD lies in solving NNLS efficiently, which in turn depends on

solving a least-squares problem (LS) efficiently. When LSPD is applied to solve SCNF

problems [149, 30], special properties of the node-arc incidence matrix can be exploited

to derive a special combinatorial implementation which solves LS very efficiently. In this

section we will give a specialized LSPD algorithm to solve the ALL-1 and 1-1 shortest

paths on networks with nonnegative arc lengths, and discuss its connection to the original

primal-dual algorithm and the well-known Dijkstra’s algorithm.

3.6.1 LSPD algorithm for the ALL-1 shortest path problem

Given an initial feasible dual solution π (we can use π = 0 because cij ≥ 0) for the dual

problem ALL-1-Dual in Section 3.3.2, first we identify those arcs (i, j) ∈ A satisfying πi −

πj = cij , which we call admissible arcs. Let Â be the set that contains all the admissible

arcs. Let Ĝ = (N, Â) denote the admissible graph, which contains all the nodes in N but

only arcs in Â. By defining cπij = cij−πi+πj as the reduced cost for arc (i, j), the admissible

arc set Â contains all the arcs (i, j) ∈ A such that cπij = 0. We call a node i an admissible

node if there exists a path from i to t in Ĝ. Assuming the sink t is initially admissible, the

admissible node set N̂ is the connected component of Ĝ that contains t.

We can solve the restricted primal problem (RPP), which seeks the flow assignment

x∗ on admissible graph Ĝ that minimizes the sum of squares of the node imbalance (or

slackness vector) δ = b− ÊxÂ :

min
∑

i∈N\t

δ2
i =

∑

i∈N\t

(bi − Êi·xÂ)
2 (3.8)

s.t. xa ≥ 0 ∀ a ∈ Â,

where Ê is the column subset of the node-arc incidence matrix (with the row corresponding

60

to node t removed) that corresponds to the admissible arcs Â. All the non-admissible arcs

have zero flows.

Problem (3.8) is a NNLS problem and can be solved by the algorithm of Leichner et al.

[216]. The optimal imbalance δ∗ can be used as a dual improving direction to improve π

(see Gopalakrishnan et al. [149, 28] for the proof) in the LSPD algorithm. Here we give a

special implementation (Algorithm 2) of Gopalakrishnan et al.’s algorithm, LSPD-ALL-1,

for solving the ALL-1 shortest path problem. It contains a procedure NNLS-ALL-1 to solve

the RPP (3.8).

Algorithm 2 LSPD-ALL-1

begin

Initialize: ∀ node i, πi := 0 ; δ∗t := 0; add node t to N̂ ;
Identify admissible arc set Â and admissible node set N̂ ;

while
∣∣∣N̂

∣∣∣ < n do

δ∗ = NNLS-ALL-1(Ĝ, N̂);
θ = min

(i,j)∈A,δ∗i >δ
∗
j

{ cij−πi+πj

δ∗i −δ
∗
j
}; π = π + θδ∗;

Identify admissible arc set Â and admissible node set N̂ ;
end

Procedure LSPD-ALL-1(Ĝ, N̂)
begin

for i = 1 to n do
if node i ∈ N̂ then

δ∗i = 0;
else

δ∗i = 1;
return δ∗;

end

Applying the algorithm LSPD-ALL-1, we obtain the following observations:

1. δ∗i = 0, ∀i ∈ N̂ and δ∗i = 1, ∀i ∈ N \ N̂ .

2. Let N̂k denote the admissible nodes set obtained in the beginning of iteration k, then

N̂k ⊆ N̂k+1 and
∣∣∣N̂k+1

∣∣∣ ≥
∣∣∣N̂k

∣∣∣ + 1

3. In at most n−1 major iterations, the algorithm LSPD-ALL-1 terminates with N̂ = N .

61

Now we show that algorithm LSPD-ALL-1 will correctly compute an ALL-1 shortest

tree.

Theorem 3.1. The δ∗ computed by the procedure NNLS-ALL-1 solves problem (3.8).

Proof. Because no non-admissible node has a path of admissible arcs to t, no non-admissible

node can ship any of its imbalance (initialized as δ∗i = 1 ∀i ∈ N \ t) to t via admissible arcs,

and thus its optimal imbalance remains 1. On the other hand, each admissible node can

always ship its imbalance to t via uncapacitated admissible arcs so that its optimal imbalance

becomes zero. Therefore the δ∗ computed by procedure NNLS-ALL-1 corresponds to the

optimal imbalance δ∗i for the RPP (3.8).

Lemma 3.1. Algorithm LSPD-ALL-1 solves the ALL-1 shortest path problem.

Proof. Algorithm LSPD-ALL-1 is a specialized LSPD algorithm for ALL-1 shortest path

problem. By Theorem 3.1, the δ∗ solves quadratic RPP (3.8). δ∗ is a dual ascent direction

[149, 28]. The algorithm LSPD-ALL-1 iteratively computes the step length θ to update

dual variables π, identifies admissible arcs (i.e., columns), and solves the quadratic RPP

(3.8) until
∑

i∈N\t

δ∗2i vanishes, which means the primal feasibility is attained. Since the

dual feasibility and complementary slackness conditions are maintained during the whole

procedure, LSPD-ALL-1 solves the ALL-1 shortest path problem.

Now we compare algorithm LSPD-ALL-1 with the original primal-dual algorithm for

solving the ALL-1 shortest path problem.

3.6.2 LSPD vs. original PD algorithm for the ALL-1 shortest path problem

The only difference between algorithm LSPD and the original PD algorithm is that they

solve different RPP. The original PD algorithm solves the following RPP:

min
∑

i∈N\t

δi (RPP-ALL-1)

s.t. Êi·xÂ + δi = 1, i ∈ N \ t

xÂ, s ≥ 0

62

whose dual is

max
∑

i∈N\t

ρi (DRPP-ALL-1)

s.t. ρi ≤ ρj , ∀(i, j) ∈ Â, i, j 6= t

ρi ≤ 0, ∀(i, t) ∈ Â

ρj ≥ 0, ∀(t, j) ∈ Â

ρi ≤ 1, ∀i ∈ N \ t

The optimal dual solution ρ∗ of DRPP-ALL-1 will be used as a dual-ascent direction

in the PD process. It is easy to observe that ρ∗i = 1 for each node i that can not reach

t along admissible arcs in Â (i.e. i is non-admissible). Also, if node i is admissible, that

is, there exists a path from i to t with intermediate nodes {i1, i2, i3, ..., ik}, then ρ∗i1 =

ρ∗i2 = ρ∗i3 = ... = ρ∗ik = 0. In other words, the original PD algorithm will have ρ∗ = 0 for

all the admissible node, and ρ∗ = 1 for all the non-admissible nodes. Thus the improving

direction ρ∗ obtained by the original PD algorithm is identical to the one obtained by LSPD

introduced in previous section.

Therefore we can say that algorithm LSPD and the original PD algorithm are identical

to each other in solving the ALL-1 shortest path problem since they produce the same

improving direction and step length and construct the same restricted network Ĝ.

Next we will compare these two algorithms with the famous Dijkstra’s algorithm.

3.6.3 LSPD vs. Dijkstra’s algorithm for the ALL-1 shortest path problem

First we review the Dijkstra’s algorithm. For our convenience, we construct a new graph

G′′ = (N,A′′) by reversing all the arc direction of A so that the original ALL-1 shortest path

problem on G to sink t becomes a 1-ALL shortest problem from source t with nonnegative

arc length on G′′. Initialize a node set V as empty and its complement V as the whole node

set N . The distance label for each node i, denoted as d(i), represents the distance from t

to i in G′′. Define pred(j) = i if node i is the predecessor of node j.

We say a node is permanently labeled if it is put into V . A node is labeled if its distance

label is finite. A node is temporarily labeled if it is labeled but not permanently labeled.

63

Algorithm 3 Dijkstra(G′′)

begin

Initialize: ∀ node i ∈ N \ t, d(i) :=∞, pred(i) = −1;
d(t) := 0, pred(t) := 0; V := ∅, V := N ;

while |V | < n do
let i ∈ V be a node such that d(i) = min{d(j) : j ∈ V }
V := V ∪ {i};V := V \ {i}
for each (i, j) ∈ A do

if d(j) > d(i) + cij then
d(j) := d(i) + cij ; pred(j) := i;

end

Dijkstra’s algorithm starts by labeling t, and then iteratively labels temporary nodes

with arcs from permanently labeled nodes. This is identical to the LSPD-ALL-1 which

grows admissible nodes only from admissible nodes. In fact, in every major iteration, the

set of admissible nodes in LSPD-ALL-1 is the same as the set of permanently labeled nodes

in Dijkstra. To show this, we only need to show that both algorithms will choose the same

nodes in every major iteration.

Theorem 3.2. Both algorithm Dijkstra and LSPD-ALL-1 choose the same node to become

permanently labeled (in Dijkstra) or admissible (in LSPD-ALL-1) in each major iteration.

Proof. We already know that both algorithms start at the same node t. In LSPD-ALL-1,

we will identify an admissible node j1 by identifying the admissible arc (j1, t) such that

(j1, t) = arg min
(j,t)∈A,s∗j>s

∗
t

{ cjt−πi+πj

s∗j−s
∗
t
} = arg min

(j,t)∈A
{cjt}. The second equality holds because

s∗j = 1, s∗t = 0, and π = 0 in the first iteration. This is the same as Dijkstra’s algorithm in

the first iteration.

Assume both algorithms have the same set of admissible (or permanently labeled) nodes

V k in the beginning of the kth major iteration. Algorithm LSPD-ALL-1 will choose an ad-

missible arc (ik, jr) such that (ik, jr) = arg min
(i,j)∈A,δ∗i >s

∗
j

{ cij−πi+πj

δ∗i −s
∗
j
} = arg min

(i,j)∈A,j∈V k,i/∈V k
{cij+

πj}. Again, the second equality holds because s∗j = 0 for each j ∈ V k, and δ∗i = 1 , πi = 0

for each i /∈ V k. If node j is admissible in the kth iteration, let j → jp → ...→ j2 → j1 → t

denote the path from j to t. Then we can calculate πj = cjjp + ...+ cj2j1 + cj1t since πt = 0

and all the arcs along this path are admissible thus having zero reduced cost. So, (ik, jr) =

64

arg min
(i,j)∈A,j∈V k,i/∈V k

{cij + πj} = arg min
(i,j)∈A,j∈V k,i/∈V k

{ ∑
(p,q)∈path{i→j→jp→...→j1→t}

cpq}. There-

fore, in the beginning of the (k+1)st major iteration, node ik becomes admissible with πik

=
∑

(p,q)∈path{ik→jr→jr−1→...→j1→t}

cpq.

Dijkstra’s algorithm in the kth iteration will choose the node reachable from V k with the

minimum distance label. That is, choose node ik reachable from a permanent labeled node jr

such that d(ik) = min
(j,i)∈A,j∈V k

d(i) = min
(j,i)∈A,j∈V k

{d(j) + cji}. Let t→ j1 → j2 → ...→ jp → j

denote the path from t to a permanently labeled node j. Since j is permanently labeled,

d(j) =
∑

(p,q)∈path{j→jp→...→j2→j1→t}

cpq. Therefore, node ik will become permanently labeled

in the (k+ 1)st major iteration with distance label d(ik) =
∑

(p,q)∈path{t→j1→j2→...→jr→ik}

cpq.

Therefore, these two algorithms perform the same operation to get the same shortest

distance label for the newly permanently labeled (or admissible) node.

From these discussion, we conclude that when solving the ALL-1 shortest path problem

with nonnegative arc length, all the three algorithms, Dijkstra, LSPD-ALL-1, and the

original PD algorithm, will perform the same operations in each iteration. In fact, this result

is due to the nondegeneracy of the problem structure. Remember that the basis corresponds

to a spanning tree in the network problem. In this ALL-1 shortest path problem, each node

other than t has supply 1 to send to t. In each iteration of these algorithms, the primal

infeasibility will strictly decrease, hence each pivot is always nondegenerate.

LSPD is an algorithm designed to take advantage of doing nondegenerate pivots in each

iteration. Therefore, in this special case, it just performs as efficiently as the other two

algorithms. Next we will see that because the 1-1 shortest path problem does not have

the nondegenerate property, thus LSPD-1-1 does do a better job than the original PD

algorithm in some sense.

3.6.4 LP formulation for the 1-1 shortest path problem

Unlike the ALL-1 shortest path problem which searches for a shortest path tree (SPT), the

1-1 shortest path problem only needs part of the SPT, namely, the shortest path between

certain two nodes, s and t. It can be viewed as sending a unit flow from s to t with the

minimal cost via uncapacitated arcs. Its linear programming formulation is similar to the

65

ALL-1 formulation in Section 3.3.2 except now the node imbalance vector b only has two

nonzero entries: +1 for s, −1 for t, and 0 for all the other nodes.

Since the node-arc incidence matrix has one redundant row, we remove the row corre-

sponding to t, to get the following primal and dual formulations:

min cx = ZP∗
1−1(x) (1-1-Primal)

s.t. Nx =





1 , if i = s

0 , if i ∈ N \ {s, t}
, i ∈ N \ t (3.9)

x ≥ 0,

whose dual is

maxπs = ZD∗
1−1(π) (1-1-Dual)

s.t. πi − πj ≤ cij ∀(i, j) ∈ A, i, j 6= t (3.10)

πi ≤ cit ∀(i, t) ∈ A (3.11)

−πj ≤ ctj ∀(t, j) ∈ A (3.12)

Here the right-hand-side of (3.9) only has one nonzero entry (+1 for node s). This

makes the dual objective ZD∗
1−1(π) differ from that of ALL-1, ZD∗

ALL−1(π), in which ZD∗
1−1(π)

maximizes only πs while ZD∗
ALL−1(π) maximize the sum

∑
i∈N\t

πi. Therefore, we give a new

procedure NNLS-1-1 to solve the nonnegative least-squares problem in our 1-1 shortest

path algorithm, LSPD-1-1. We will also illustrate the difference between solving the ALL-1

and 1-1 shortest path problem when the original PD algorithm is applied. Finally we will

explain the connections between the Dijkstra, LSPD-1-1, and original PD algorithms when

they are used to solve the 1-1 shortest path problem.

3.6.5 LSPD algorithm for the 1-1 shortest path problem

Before we give the new LSPD-1-1 shortest path algorithm, the admissible node set N̂ has

to be redefined as follows: a node i is admissible if it is reachable from s only via admissible

arcs. All the other definitions such as admissible arcs Â and the admissible graph Ĝ remain

the same as in Section 3.6.1. With a procedure NNLS-1-1 that solves the RPP (3.8), the

algorithm LSPD-1-1 is shown below as Algorithm 4.

66

Algorithm 4 LSPD-1-1

begin

Initialize: ∀ node i, πi := 0 ; δ∗s := 0; add node s to N̂ ;
Identify admissible arc set Â and admissible node set N̂ ;

while node t /∈ N̂ do
δ∗ = NNLS-1-1(Ĝ, N̂);
θ = min

(i,j)∈A,δ∗i >δ
∗
j

{ cij−πi+πj

δ∗i −δ
∗
j
}; π = π + θδ∗;

Identify admissible arc set Â and admissible node set N̂ ;
end

Procedure LSPD-1-1(Ĝ, N̂)
begin

for i = 1 to n do
if node i ∈ N̂ then

δ∗i = 1
|N̂ |

;

else
δ∗i = 0;

return δ∗;
end

Applying algorithm LSPD-1-1, we obtain the following observations:

1. δ∗i = 1

|N̂| , ∀i ∈ N̂ and δ∗i = 0, ∀i ∈ N \ N̂ .

2. Let N̂k denote the admissible nodes set obtained in the beginning of iteration k. Then

N̂k ⊆ N̂k+1 and
∣∣∣N̂k+1

∣∣∣ ≥
∣∣∣N̂k

∣∣∣ + 1.

3. In at most n − 1 major iterations, the algorithm LSPD-1-1 terminates when node t

becomes admissible. Then, s can send its unit imbalance to t via some path composed

only by admissible arcs so that the total imbalance over all nodes becomes 0.

Now we show that algorithm LSPD-1-1 will correctly the shortest path from s to t.

Theorem 3.3. The δ∗ computed by the procedure NNLS-1-1 solves problem (3.8).

Proof. The RPP (3.8) is a quadratic programing problem. If we relax the nonnegativity

constraints, it is a least-squares problem which can be solved by solving the normal equation

ÊT Êx∗ = ÊT b. In other words, ÊT δ∗ = ÊT (b − Êx∗) = 0. Note that each row of ÊT

contains only two nonzero entries (i.e., +1 and −1) which represent an admissible arc. In

67

other words, ÊT δ∗ = 0 implies δ∗i = s∗j for each admissible arc (i, j) which implies all

admissible nodes have the same optimal imbalance δ∗. Since the total system imbalance is

1 (from the source s), the optimal least-squares solution δ∗i for the RPP (3.8) will be 1

|N̂| for

each admissible node i. Using the optimal imbalance δ∗, it is easy to compute the unique

optimal arc flow x∗ and verify that x∗ ≥ 0 by traversing nodes on the component that

contains the source node s (For more details in application of LSPD on network problems,

see [149, 30].). Thus the optimal imbalance δ∗ by the procedure NNLS-1-1 solves (3.8)

Lemma 3.2. Algorithm LSPD-1-1 solves the 1-1 shortest path problem from s to t.

Proof. Algorithm LSPD-1-1 is a specialized LSPD algorithm for 1-1 shortest path problem.

By Theorem 3.3, the δ∗ solves quadratic RPP (3.8). δ∗ is a dual ascent direction [149, 28].

The algorithm LSPD-1-1 iteratively computes the step length θ to update dual variables π,

identifies admissible arcs (i.e., columns), and solves the quadratic RPP (3.8) until
∑

i∈N\t

δ∗2i

vanishes, which means the primal feasibility is attained. Since the dual feasibility and

complementary slackness conditions are maintained during the whole procedure, LSPD-1-1

solves the 1-1 shortest path problem from s to t.

Intuitively, we can view this algorithm as the following: starting from the source s,

LSPD-1-1 tries to reach t by growing the set of admissible nodes. The algorithm keeps

propagating the unit imbalance along all the admissible arcs so that the unit imbalance

will be equally distributed to each admissible node before t becomes admissible. Once t

becomes admissible, all the imbalance flows to t so that the optimal system imbalance δ∗

becomes 0. Then the algorithm is finished.

To further speed up algorithm LSPD-1-1, we observe that for each admissible node

k, s∗k = 1
|N̂ |

and θs∗k = min
(i,j)∈A,δ∗i >s

∗
j

{ cij−πi+πj

δ∗i −s
∗
j
} · 1

|N̂ |
= min

(i,j)∈A,δ∗i = 1

|N̂|
,s∗j =0
{ cij−πi+πj

1

|N̂|

} · 1
|N̂ |

=

min
(i,j)∈A,δ∗i >s

∗
j

{cij − πi + πj} · 1. Thus we can speed up the algorithm LSPD-1-1 using θ̂ =

min
(i,j)∈A,δ∗i >s

∗
j

{cij − πi + πj} and ŝk = 1 instead of the original θ and s∗k. This modification

will not affect the selection of new admissible arc and node; thus the algorithm achieves the

same objective using simpler computations.

68

For our convenience, we will use this modified version of the LSPD-1-1 algorithm in

later sections.

3.6.6 LSPD vs. original PD algorithm for the 1-1 shortest path problem

When the original PD algorithm solves the 1-1 shortest path problem, the primal RPP

formulation is as follows:

min
∑

i∈N\t

δi (RPP-1-1)

s.t. Êi·xÂ + δi =





1 , if i = s

0 , if i ∈ N \ {s, t}
, i ∈ N \ t

xÂ, s ≥ 0

whose dual is

max ρs (DRPP-1-1)

s.t. ρi ≤ ρj , ∀(i, j) ∈ Â, i, j 6= t

ρi ≤ 0, ∀(i, t) ∈ Â

ρj ≥ 0, ∀(t, j) ∈ Â

ρi ≤ 1, ∀i ∈ N \ t

Unlike when solving the ALL-1 shortest path problem, the original PD algorithm will

have degenerate pivots when solving RPP-1-1, which is a major difference from the LSPD

algorithm since the LSPD algorithm guarantees nondegenerate pivots at every iteration.

If s and t are not adjacent and all the arc costs are strictly positive, we start the algorithm

with π = 0 which makes Â empty in the first iteration. Then the optimal solution for DRPP-

1-1 in the first iteration will be ρ∗s = 1, ρ∗i ≤ 1 ∀i ∈ N \{s, t}. That is, we are free to choose

any ρ∗i as long as it does not exceed 1. This property of multiple optimal dual solutions

is due to the degeneracy of RPP-1-1. When we have multiple choices to improve the dual

solution, there is no guarantee of improving the objective of RPP-1-1 at any iteration. In

fact, we may end up cycling or take a long time to move out the degenerate primal solution.

69

If we are very lucky, by choosing the ”right” dual improving direction, we may even solve

this problem much faster.

To eliminate the uncertainty caused by primal degeneracy when solving RPP-1-1, we

have to choose the dual improving direction in a smart way. One way is to choose ρ∗i = 0

for non-admissible nodes. Then, by the first constraint in DRPP-1-1, admissible nodes will

be forced to have ρ∗i = 1. This is because we want to maximize ρs, and the best we can

do is ρ∗s = 1. By doing so, we force all the nodes reachable from s (i.e., admissible nodes)

to have ρ∗i = 1. Then the original PD algorithm chooses the same admissible arcs and

nodes as LSPD-1-1. Next, we will show that this specific PD algorithm performs the same

operations as Dijkstra’s algorithm in each iteration.

3.6.7 LSPD vs. Dijkstra’s algorithm for the 1-1 shortest path problem

The Dijkstra’s algorithm for the 1-1 shortest path problem is the same as the ALL-1 case

in Section 3.6.3, except that it terminates as soon as the sink t is permanently labeled. In

this section, we show that algorithm LSPD-1-1 performs the same operations as Dijkstra’s

algorithm does.

Algorithm LSPD-1-1 starts at source node s, and then identifies admissible arcs to

grow the set of admissible nodes. This is the same as Dijkstra’s algorithm. If both algo-

rithms choose the same node in each iteration, the admissible node set N̂ in the LSPD-1-1

algorithm will be equivalent to the permanently labeled node set V in Dijkstra’s algorithm.

The following proposition explains that both algorithms choose the same nodes in every

major iteration.

Theorem 3.4. Both Dijkstra and LSPD-1-1 choose the same node to become permanently

labeled (in Dijkstra) or admissible (in LSPD-1-1) in each major iteration.

Proof. We already know that both algorithms start at s. In LSPD-1-1, we will iden-

tify an admissible node i1 by identifying the admissible arc (s, i1) such that (s, i1) =

arg min
(s,i)∈A,s∗s>δ

∗
i

{ csi−πs+πi

s∗s−δ
∗
i
} = arg min

(s,i)∈A
{csi}.The second equality holds because s∗s = 1,

δ∗i = 0, and π = 0 in the first iteration. This is the same as Dijkstra’s algorithm in

the first iteration.

70

Assume both algorithms have the same set of admissible (or permanently labeled)

nodes V k in the beginning of the kth major iteration. Algorithm LSPD-1-1 will choose an

arc (ir, jk) such that (ir, jk) = arg min
(i,j)∈A,δ∗i >s

∗
j

{ cij−πi+πj

δ∗i −s
∗
j
} = arg min

(i,j)∈A,i∈V k,j /∈V k
{cij − πi}.

Again, the second equality holds because δ∗i = 1 for each i ∈ V k, and s∗j = 0, πj = 0 for

each j /∈ V k If node i is admissible in the kth iteration, let s → i1 → i2 → ... → ip → i

denote the path from s to i. Then we can calculate πs = csi1 + ci1i2 + ... + cipi +

πi since all the arcs along this path are admissible and thus have zero reduced cost.

That is, −πi =
∑

(p,q)∈path{s→i1→i2...→i}

cpq − πs for each admissible node i. So, (ir, jk)

= arg min
(i,j)∈A,i∈V k,j /∈V k

{cij − πi} = arg min
(i,j)∈A,i∈V k,j /∈V k

{ ∑
(p,q)∈path{s→i1→i2...→i→j}

cpq − πs} =

arg min
(i,j)∈A,i∈V k,j /∈V k

{ ∑
(p,q)∈path{s→i1→i2...→i→j}

cpq}. The last equality holds since πs is fixed

when we compare all the arcs (i, j) ∈ A, i ∈ V k, j /∈ V k.

Therefore, in the beginning of the (k+1)st major iteration, node jk becomes admissible

with πjk = 0, and πs =
∑

(p,q)∈path{s→i1→i2...→ir→jk}

cpq.

The criterion to choose the new admissible arc (ir, jk) is the same as Dijkstra’s algorithm

which we will explain next.

Dijkstra’s algorithm in the kth iteration will choose a node reachable from V k with

minimum distance label. That is, it chooses a node jk reachable from some permanent

node ir such that d(jk) = min
(i,j)∈A,i∈V k,j /∈V k

d(j) = min
(i,j)∈A,i∈V k,j /∈V k

{d(i) + cij}. Let s →

i1 → i2 → ... → ip → i denote the path from s to a permanently labeled node i. Since

i is permanently labeled, d(i) =
∑

(p,q)∈path{s→i1→i2...→ip→i}

cpq. Therefore, node jk will be-

come permanently labeled because d(jk) = min
(i,j)∈A,i∈V k,j /∈V k

{d(i) + cij} = min
(i,j)∈A,i∈V k,j /∈V k

{ ∑
(p,q)∈path{s→i1→i2...→i→j}

cpq}. That is, node jk will become permanently labeled in the

(k+1)st major iteration and will have distance label d(jk) =
∑

(p,q)∈path{s→i1→i2...→ir→jk}

cpq.

It is easy to see that these two algorithms perform the same operation to identify the

same newly permanently labeled (or admissible) node.

From this proposition, we observe that in the LSPD-1-1 algorithm, πi represents the

shortest distance between an admissible node i and the most recent admissible node in V k,

while in Dijkstra’s algorithm d(i) represents the shortest distance between s and i. In other

71

words, d(i) = πs − πi for any admissible node i. Therefore, when t becomes admissible,

d(t) = πs.

Here we use a physical example to illustrate these two algorithms. Consider each node

as a ball, and each arc as a string connecting two balls. Here we assume all the arc length

is positive.

For the LSPD-1-1 algorithm, we can think as follows: in the beginning we put all the

balls on the floor, and then we pick up ball s and raise it. We keep raising s until the string

(s, i1) becomes tight; then if we raise ball s further more, ball i1 will be raised. We keep

increasing the height of s until finally ball t is raised. At this moment, the height of s (i.e.

πs) is the shortest path between s and t, and the shortest path consists of all arcs on the

path to t whose strings are tight.

For Dijkstra’s algorithm, we use a plate which has one hole for these n balls to fall

through. In the beginning we put the plate on the floor, then put ball s in the hole and

all the other balls on the plate. We will put ball s on the floor so that when we raise the

plate, s will stay on the floor. Then we begin to raise the plate until the string (s, i1) is so

tight that ball i1 begins to pass through the hole. We keep raising the plate until finally

ball t is about to fall through the hole. At that time, the height of ball t (i.e. d(t)) is the

shortest path length between s and t, and the shortest path consists of all arcs on the path

to t whose strings are tight.

From these discussion, we conclude that when solving the 1-1 shortest path problem

with nonnegative arc lengths, Dijkstra and LSPD-1-1 algorithm are, in fact, identical to

each other. The original P-D algorithm will face the problem of primal degeneracy when

solving the RPP-1-1. However, if we choose the improving dual direction intelligently (i.e.,

ρ∗ = 0 for all non-admissible nodes and ρ∗ = 1 for all admissible nodes), the original PD

algorithm will perform same operations as the LSPD-1-1 algorithm.

3.6.8 Summary

In summary, the LSPD algorithm is identical to Dijkstra’s algorithm for solving both ALL-1

and 1-1 shortest path problems. The original PD algorithm, on the other hand, is identical

72

to the Dijkstra’s algorithm for solving the ALL-1 shortest path problem, but needs to choose

a specific dual improving direction (there are multiple ones) so that it will be identical to

the Dijkstra’s algorithm.

For the general arc cost cases, both LSPD and the original PD algorithms can be applied,

but Dijkstra’s algorithm is not applicable. The theoretical and practical performances of

LSPD and the original PD algorithms for solving shortest path problems with general arc

costs remain to be investigated.

73

