
CHAPTER IV

NEW MULTIPLE PAIRS SHORTEST PATH

ALGORITHMS

We have reviewed most of the shortest path algorithms in the literature in Chapter 3.

Our purpose is to design new algorithms that can efficiently solve the MPSP problem. In

this Chapter, we propose two new MPSP algorithms that exploit ideas from Carré’s APSP

algorithm (see Section 3.4.1.1).

Section 4.1 introduces some definitions and basic concepts. Section 4.2 presents our

first new MPSP algorithm (DLU1) and proves its correctness. Section 4.3 gives our second

algorithm (DLU2) and describes why it is superior to the first one. Section 4.4 summarize

our work.

4.1 Preliminaries

Based on the definition and notation introduced in Section 3.2, we define the up-inward arc

adjacency list denoted ui(i) of a node i to be an array that contains all arcs which point

upwards into node i, and down-inward arc adjacency list denoted di(i) to be an array of

all arcs pointing downwards into node i. Similarly, we define the up-outward arc adjacency

list denoted uo(i) of a node i to be an array of all arcs pointing upwards out of node i, and

down-outward arc adjacency list denoted do(i) to be an array of all arcs pointing downwards

out of node i.

For convenience, if there are multiple arcs between a node pair (i, j), we choose the

shortest one to represent arc (i, j) so that cij in the measure matrix is unique without

ambiguity. If there is no path from i to j, then xij =∞.

Define an induced subgraph denoted H(S) on the node set S which contains only arcs

(i, j) of G with both ends i and j in S. Let [s, t] denote the set of nodes {s, (s+1), . . . , (t−

1), t}. Figure 4 illustrates examples of H([1, s]∪t) and H([s, t]) which will be used to explain

74

our algorithms later on.

1 2 3 4 5

1 2 3 52 3 4

1 2 3 4 5

3 6

1 1

3 1

2

1 7

8

3 2 6

21 1 7

3 18 ji

i j

uo(3) : (3, 5) do(3) : (3, 1), (3, 2)

lower nodes higher nodesOriginal Graph

cij

i < j

upward arc

ui(3) : (1, 3) di(3) : (4, 3), (5, 3)

Arc adjacency lists of node 3

downward arc

H([s, t]) : s = 2, t = 4 H([1, s] ∪ t) : s = 3, t = 5

Figure 4: Illustration of arc adjacency lists, and subgraphs H([2, 4]), H([1, 3] ∪ 5)

Carré’s algebraic APSP algorithm [64, 65] uses Gaussian elimination to solve X =

CX ⊕ In. After a LU decomposition procedure, Carré’s algorithm performs n applications

of forward elimination and backward substitution procedures. Each forward/backward op-

eration in turn gives an optimal column solution of X which corresponds to an ALL-1

shortest distance vector. This decomposability of Carré’s algorithm makes it more attrac-

tive than the Floyd-Warshall algorithm for MPSP problems.

Inspired by Carré’s algorithm, we propose two algorithms DLU1 and DLU2 that fur-

ther reduce computations required for MPSP problems. We use the name DLU for our

algorithms since they contain procedures similar to the LU decomposition in Carré’s algo-

rithm and are more suitable for dense graphs. Not only can our algorithms decompose a

MPSP problem as Carré’s algorithm does, they can also compute the requested OD short-

est distances without the need of shortest path trees required by other APSP algorithms.

75

Therefore our algorithms save computational work over other APSP algorithms and are ad-

vantageous for problems where only distances (not paths) are requested. For problems that

require tracing of shortest path for a particular OD pair (s, t), DLU1 solves the shortest

path tree rooted at t as Carré’s algorithm does, while DLU2 can trace the path without

the need of computing that shortest path tree.

For sparse graphs, node ordering plays an important role in the efficiency of our algo-

rithms. A bad node ordering will incur more fill-in arcs which resemble the fill-ins created

in Gaussian elimination. Computing an ordering that minimizes the fill-ins is NP -complete

[272]. Nevertheless, many fill-in reducing techniques such as Markowitz’s rule [230], mini-

mum degree method, and nested dissection method (see Chapter 8 in [98]) used in solving

systems of linear equations can be exploited here as well. Since our algorithms do more

computations on higher nodes than lower nodes, optimal distances can be obtained for

higher nodes earlier than lower nodes. Thus reordering the requested OD pairs to have

higher indices may also shorten the computational time, although such an ordering might

incur more fill-in arcs. In general, it is difficult to obtain an optimal node ordering that

minimizes the computations required. More details about the impact of node ordering will

be discussed in Section 5.2.1. Here, we use a predefined node ordering to start with our

algorithms.

The underlying ideas of our algorithms are as follows: Suppose the shortest path in G

from s to t contains more than one intermediate node and let r be the highest intermediate

node in that shortest path. There are only three cases: (1) r < min{s, t} (2) min{s, t} <

r < max{s, t} and (3) r > max{s, t}. The first two cases correspond to a shortest path

in H([1,max{s, t}])̇, and the last case corresponds to a shortest path in H([1, r]) where

r > max{s, t}. Including the case where the shortest path is a single arc, our algorithms

systematically calculate shortest paths for these cases and obtain the shortest path in G

from s to t. When solving the APSP problem on a complete graph, our algorithms have

the same number of operations as the Floyd-Warshall algorithm does in the worst case. For

general MPSP problems, our algorithms beat the Floyd-Warshall algorithm.

76

4.2 Algorithm DLU1

Our first shortest path algorithm DLU1 reads a set of q OD pairs Q := {(si, ti) : i =

1, . . . , q}. We set i0 to be the index of the lowest origin node in Q, j0 to be the index of

the lowest destination node in Q, and k0 to be min
i
{max{si, ti}}. DLU1 then computes

x∗st for all node pairs (s, t) satisfying s ≥ k0, t ≥ j0 or s ≥ i0, t ≥ k0 which covers all the

OD pairs in Q. However, the solution does not contain sufficient information to trace their

shortest paths, unless i0 and k0 are set to be 1 and j0 respectively in which case DLU1

gives shortest path trees rooted at sink node t for each t = j0, . . . , n.

Algorithm 5 DLU1(Q := {(si, ti) : i = 1, . . . ,q})

begin

Initialize: ∀ s, xss := 0 and succss := s
∀(s, t), if (s, t) ∈ A then

xst := cst; succst := t
if s < t then add arc (s, t) to uo(s) and ui(t)
if s > t then add arc (s, t) to do(s) and di(t)

else xst :=∞ ; succst := 0
set i0 := min

i
si ; j0 := min

i
ti ; k0 := min

i
{max{si, ti}}

if shortest paths need to be traced
then reset i0 := 1 ; k0 := j0

G LU ;
Acyclic L(j0);
Acyclic U(i0);
Reverse LU(i0, j0, k0);

end

In the kth iteration of LU decomposition in Gaussian elimination, we use diagonal entry

(k, k) to eliminate entry (k, t) for each t > k. This will update the (n−k)×(n−k) submatrix

and create fill-ins. Similarly, Figure 5(a) illustrates the operations of procedure G LU on

a 5-node graph. It sequentially uses node 1, 2, and 3 as intermediate nodes to update the

remaining 4× 4, 3× 3, and 2× 2 submatrix of [xij] and [succij]. G LU computes shortest

paths for any node pair (s, t) in H([1,min{s, t}] ∪ max{s, t}) (as defined in Section 4.1).

Note that x∗n,n−1 and x∗n−1,n will have been obtained after G LU .

The second procedure, Acyclic L(j0), computes shortest paths for all node pairs (s, t)

such that s > t ≥ j0 in H([1, s]). Figure 5(b) illustrates the operations of Acylic L(2) which

updates the column of each entry (s, t) that satisfies s > t ≥ 2 in the lower triangular part

77

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0

0

0

00

00

00

0

������ ��

������	�	
�

������
�
���

����������������������
����������������������
������

��

����� � �
!�!"�" #�#$�$

%�%&�&'�'(�()�)*�*
+�+,�,-�-�-.�.�./�/�/0�0�0

12

3435456677 89:;<=>?@A
BBCC

DEF4FF4FG4GG4G
HI

JJKKLM
N4NN4NO4OO4O

PQRST4TT4TU4UU4U VVWWXXY
YZZ[[\]^^__

`ab4bc4c
de

fg
hi
j4jk4k

lmno
p4pq4q rstuvw xy
z{

|}

~�
�����4��4��4��4��4��4�

�����4��4� ���4��4�
���4��4��4��4�

�4��4�

���� ���������4��4��4��4� ����
 ¡

X

¢4¢¢4¢£4££4£ ¤¥
X

¦¦§§ X
X¨4¨¨4¨©4©©4©

ªª««
X

X
X

X

X

¬¬­­

X

X
X

®®¯¯ °°±±

²³

X

X
XX

´µ

¶·

X

¸4¸¸4¸¹4¹¹4¹

X
X

º»

¼�¼�¼½�½�½

X

X

X
X

¾4¾¾4¾¿4¿¿4¿
À4ÀÁ4ÁÂ4ÂÂ4ÂÃ4ÃÃ4Ã

X

Ä4ÄÄ4ÄÅ4ÅÅ4Å
X

X

X

X

Optimal

t = 2 , s = 1

(c) Procedure Reverse LU(1, 2, 3)

k = 1

k = 4k = 5

(b) Procedure Acyclic L(2) , Acyclic U(1)

s = 3

k = 3k = 2

(a) Procedure G LUUpdated entries by G LU

Requested OD entry

Updated entries by Acyclic U

Optimal entries

Updated entries by Reverse LU

Updated entries by Acyclic L

k0 = min{4, 3, 5} = 3

i0 = 1 , j0 = 2

Q = {(1, 4), (2, 3), (5, 2)}

t = 3 , s = 2

Figure 5: Solving a 3 pairs shortest path problem on a 5-node graph by Algorithm DLU1(Q)

of [xij] and [succij] since node 2 is the lowest destination node in Q. Note that x∗nj for all

j ≥ j0 will have been obtained after Acyclic L(j0).

Similar to the previous procedure, Acyclic U(i0) computes shortest paths for all node

pairs (s, t) such that i0 ≤ s < t in H([1, t]). Figure 5(b) also illustrates the operations of

Acylic U(1) which updates the row of each entry (s, t) that satisfies t > s ≥ 1 in the upper

triangular part of [xij] and [succij] since node 1 is the lowest origin node in Q. Note that

x∗in for all i ≥ i0 will have been obtained after Acyclic U(i0).

By now, for any OD pair (s, t) such that s ≥ i0 and t ≥ j0 the algorithm will have deter-

mined its shortest distance in H(1,max{s, t}). The final step, similar to LU decomposition

but in a reverse fashion, Reverse LU(i0, j0, k0) computes length of the shortest paths in

H([1, r]) that must pass through node r for each r = n, . . . , (max{s, t}+1) from each origin

s ≥ k0 to each destination t ≥ j0 or from each origin s ≥ i0 to each destination t ≥ k0. The

algorithm then compares the xst obtained by the last step with the one obtained previously,

and chooses the smaller of the two which corresponds to x∗st in G. Figure 5(c) illustrates

the operations of Reverse LU(1, 2, 3) which updates each entry (s, t) of [xij] and [succij]

that satisfies 1 ≤ s < k, 2 ≤ t < k. In this case, it runs for k = 5 and 4 until entry (2, 3) is

78

updated. Note that x∗st for all s ≥ i0, t ≥ k0 or s ≥ k0, t ≥ j0 will have been obtained after

Reverse LU(i0, j0, k0) and thus shortest distances for all the requested OD pairs in Q will

have been computed.

To trace shortest paths for all the requested OD pairs, we have to set i0 = 1 and k0 = j0

in the beginning of the algorithm. If i0 > 1, Acylic U(i0) and Reverse LU(i0, j0, k0) will

not update succst for all s < i0. This makes tracing shortest paths for some OD pairs

(s, t) difficult if those paths contain intermediate nodes with index lower than i0. Similarly,

if k0 > j0, Reverse LU(i0, j0, k0) will not update succst for all t < k0. For example, in

the last step of Figure 5(c), if node 1 lies in the shortest path from node 5 to node 2,

then we may not be able to trace this shortest path since succ12 has not been updated in

Reverse LU(1, 2, 3). Therefore even if Algorithm DLU1 gives the shortest distance for the

requested OD pairs earlier, tracing these shortest paths requires more computations.

It is easily observed that we can solve any APSP problem by setting i0 := 1, j0 := 1

when applying DLU1. For solving general MPSP problems where only shortest distances

are requested, DLU1 can save more computations without retrieving the shortest path

trees, thus makes it more efficient than other algebraic APSP algorithms. More details will

be discussed in following sections.

4.2.1 Procedure G LU

For any node pair (s, t), Procedure G LU computes shortest path from s to t in H(

[1,min{s, t}] ∪ max{s, t}). The updated xst and succij will then be used to determine

the shortest distance in H([1,max{s, t}]) from s to t by the next two procedures.

Figure 5(a) illustrates the operations of G LU . It sequentially uses node k = 1, . . . , (n−

2) as intermediate node to update each entry (s, t) of [xij] and [succij] that satisfies k <

s ≤ n and k < t ≤ n as long as xsk <∞, xkt < ∞ and xst > xsk + xkt.

Thus this procedure is like the LU decomposition in Gaussian elimination. Graphically

speaking, it can be viewed as a process of constructing the augmented graph G′ obtained

by either adding fill-in arcs or changing some arc lengths on the original graph when better

paths are identified using intermediate nodes whose index is smaller than both end nodes of

79

Procedure G LU

begin

for k = 1 to n− 2 do

for each arc (s, k) ∈ di(k) do

for each arc (k, t) ∈ uo(k) do

if xst > xsk + xkt
if s = t and xsk + xkt < 0 then

Found a negative cycle; STOP

if xst =∞ then

if s > t then

add a new arc (s, t) to do(s) and di(t)
if s < t then

add a new arc (s, t) to uo(s) and ui(t)
xst := xsk + xkt ; succst := succsk

end

the path. For example, in Figure 6 we add fill-in arc (2, 3) because 2→ 1→ 3 is a shorter

path than the direct arc from node 2 to node 3 (infinity in this case). We also add arcs

(3, 4) and (4, 5) and modify the length of original arc (4, 3).

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5

3 18

4 79

1 2 3 4 5

3 2 6

21 1 6

3 2 6

21 1 7

3 18

3 2 6

21 1 6

3 18

4 79

G′

U G′

L

i j
cij

Original Graph G Augmented Graph G′

Dotted arcs have been added or modified

Figure 6: Augmented graph after procedure G LU

If we align the nodes by ascending order of their index from the left to the right, we

can easily identify the subgraph G′L (G′U) which contains all the downward (upward) arcs

of G′. (see Figure 6)

We can initialize the arc adjacency lists ui(i), di(i), uo(i) and do(i) (see Section 4.1)

when we read the graph data. If xst =∞ and xsk + xkt < ∞ where k < min{s, t}, we add

80

a fill-in arc (s, t) to G. The adjacency lists di(k), do(k), ui(k), and uo(k) for node k > 1

are updated during the procedure whenever a new arc is added. Given two arcs (s, k) and

(k, t), a triple comparison s → k → t compares csk + ckt with cst. If there exists no arc

(s, t), we add a fill-in arc (s, t) and assign csk + ckt to be its length; Otherwise, we update

its length to be csk + ckt.

G LU is a sparse implementation of the triple comparisons s → k → t for any (s, t) and

for each k = 1, . . . , (min{s, t} − 1). In particular, a shortest path for any node pair (s, t)

in H([1,min{s, t}] ∪ max{s, t}) will be computed and stored as an arc (s, t) in G′. Thus

xn,n−1 = x∗n,n−1 and xn−1,n = x∗n−1,n since H([1, n − 1] ∪ n) = G. G LU can also detect

negative cycles.

The complexity of this procedure depends on the topology and node ordering. The

number of triple comparisons is bounded by
n−2
∑

k=1

(|di(k)| · |uo(k)|), or O(n3) in the worst

case. It is n(n−1)(n−2)
3 on a complete graph. In practice a good node ordering may reduce

the number of comparisons for non-complete graphs. Determining a good node ordering is

the same as determining a good permutation of columns when solving systems of equations

so that the number of fill-ins required is reduced in the LU decomposition. More implemen-

tation details of our algorithms regarding sparsity techniques will be covered in Chapter

5.

4.2.2 Procedure Acyclic L(j0)

After obtaining the shortest paths in H([1, t]) from each node s > t to each node t in previous

procedure, Acyclic L(j0) computes their shortest paths in H([1, s]) from each node s > t

to each node t ≥ j0. The updated xst and succij will then be used to compare with the

shortest distances in H([1, r]) for each r = (s+1), . . . , n from each node s > t to each node

t ≥ j0 by the last procedure.

This procedure does sequences of shortest path tree computations in G′L, the acyclic

subgraph of augmented graph G′ that contains all of its downward arcs (see Section 4.2.1).

Its subprocedure, Get D L(t), resembles the forward elimination in Gaussian elimination.

Each application of subprocedure Get D L(t) gives the shortest distance in G′L from each

81

Procedure Acyclic L(j0)
begin

Initialize: ∀ node k, ˆdo(k) := do(k)
for t = j0 to n− 2 do

Get D L(t);
end

Subprocedure Get D L(t)
begin

put node t in LIST
while LIST is not empty do

remove the lowest node k in LIST
for each arc (s, k) ∈ di(k) do

if s /∈ LIST , put s into LIST
if xst > xsk + xkt then

if xst =∞ then

add a new arc (s, t) to ˆdo(s)
xst := xsk + xkt ; succst := succsk

end

node s > t to node t, and we repeat this subprocedure for each root node t = j0, . . . , (n−2).

Thus for each OD pair (s, t) satisfying s > t ≥ j0, we obtain the shortest distance in G′L

from s to t which in fact corresponds to the shortest distance in H([1, s]) from s to t. (see

Corollary 4.2(a) in Section 4.2.5) Also, this procedure gives x∗nt, the shortest distance in G

from node n to any node t ≥ j0. (see Corollary 4.2(c) in Section 4.2.5)

Figure 5(b) in Section 4.2 illustrates the operations of Acyclic L(j0). Each application

of the subprocedure Get D L(t) updates each entry (s, t) in column t of [xij] and [succij]

satisfying s > t, to represent the shortest distance in G′L from node s to node t and the

successor of node s in that shortest path.

For each node k > j0, we introduce a new down-outward arc adjacency list (defined in

Section 4.1) denoted ˆdo(k) which is initialized to be do(k) obtained from procedure G LU .

Whenever we identify a path (not a single arc) in G′L from node k > t to node t ≥ j0,

we add a new arc (k, t) to ˆdo(k). This connectivity information will be used by procedure

Reverse LU for sparse operation and complexity analysis.

The number of triple comparisons is bounded by
n−2
∑

t=j0

n−1
∑

k=t

|di(k)|, or O((n− j0)
3) in the

worst case. Note that if we choose a node ordering such that j0 is large, then we may

82

decrease the computational work in this procedure, but such an ordering may make the

first procedure G LU and the next procedure Acyclic U(i0) inefficient. When solving an

APSP problem, we have to set j0 = 1; thus, a
n−2
∑

t=1

n−1
∑

k=t

|di(k)| bound is obtained, which will

be n(n−1)(n−2)
6 on a complete graph. Therefore this procedure is O(n3) in the worst case.

4.2.3 Procedure Acyclic U(i0)

After obtaining the shortest paths in H([1, s]) from each node s < t to each node t in

procedure G LU , Acyclic U(i0) computes their shortest paths in H([1, t]) from each node

s ≥ i0 to each node t > s. The updated xst will then be compared with the shortest

distances in H([1, r]) for each r = (t + 1), . . . , n from each node s ≥ i0 to each node t > s

by the last procedure.

Procedure Acyclic U(i0)
begin

Initialize: ∀ node k, ˆui(k) := ui(k)
for s = i0 to n− 2 do

Get D U(s);
end

Subprocedure Get D U(s)
begin

put node s in LIST
while LIST is not empty do

remove the lowest node k in LIST
for each arc (k, t) ∈ uo(k) do

if t /∈ LIST , put t into LIST
if xst > xsk + xkt then

if xst =∞ then

add a new arc (s, t) to ˆui(t)
xst := xsk + xkt ; succst := succsk

end

This procedure is similar to Acyclic L(j0) except it is applied on the upper triangular

part of [xij] and [succij], which corresponds to shortest distance from i to j and the successor

of i in that shortest path in G′U , the acyclic subgraph of augmented graph G′ that contains

all of its upward arcs (see Section 4.2.1). Each application of subprocedure Get D U(s)

gives the shortest distance in G′U from each node s to each node t > s, and we repeat this

83

subprocedure for each root node s = i0, . . . , (n− 2). Thus for each OD pair (s, t) satisfying

i0 ≤ s < t, we obtain the shortest distance in G′U from s to t which in fact corresponds to

the shortest distance in H([1, t]) from s to t. (see Corollary 4.2(b) in Section 4.2.5) Also,

this procedure gives x∗sn, the shortest distance in G from any node s ≥ i0 to node n. (see

Corollary 4.2(c) in Section 4.2.5)

Figure 5(b) in Section 4.2 illustrates the operations of Acyclic U(i0). Each application

of the subprocedure Get D U(s) updates each entry (s, t) in row s of [xst] and [succst]

satisfying s < t which represents the shortest distance in G′U from node s < t to node t and

the successor of node s in that shortest path.

For each node k > i0, we introduce a new up-inward arc adjacency list (defined in

Section 4.1) denoted ˆui(k) which is initialized to be ui(k) obtained from procedure G LU .

Whenever we identify a path (not a single arc) in G′U from node s ≥ i0 to node k > s,

we add a new arc (s, k) to ˆui(k). This connectivity information will be used by procedure

Reverse LU for sparse operation and complexity analysis.

The number of triple comparisons is bounded by
n−2
∑

s=i0

n−1
∑

k=s

|uo(k)|, or O((n− i0)
3) in the

worst case. Note that if we choose a node ordering such that i0 is large, then we may

decrease the computational work in this procedure, but such an ordering may make the

first procedure G LU and previous procedure Acyclic L(j0) inefficient. When solving an

APSP problem, we have to set i0 = 1; thus, a
n−2
∑

s=1

n−1
∑

k=s

|uo(k)| bound is obtained, which will

be n(n−1)(n−2)
6 on a complete graph. Therefore this procedure is O(n3) in the worst case.

4.2.4 Procedure Reverse LU(i0, j0, k0)

After previous two procedures, the algorithm will have determined the length of shortest

path in H(1,max{s, t}) from each node s ≥ i0 to each node t ≥ j0. Reverse LU(i0, j0, k0)

then computes shortest distances in H([1, r]) for each r = n, . . . , (max{s, t}+ 1) from each

origin s ≥ k0 to each destination t ≥ j0 or from each origin s ≥ i0 to each destination

t ≥ k0. Note that k0 is set to be min
i
{max{si, ti}} so that all the requested OD pairs in Q

will be correctly updated by the procedure.

84

Procedure Reverse LU(i0, j0,k0)
begin

for k = n down to k0 + 1 do

for each arc (s, k) ∈ ˆui(k) and s ≥ i0 do

for each arc (k, t) ∈ ˆdo(k) and t ≥ j0, s 6= t do

if xst > xsk + xkt then

if xst =∞ then

if s > t then add new arc (s, t) to ˆdo(s)

if s < t then add new arc (s, t) to ˆui(t)
xst := xsk + xkt ; succst := succsk

end

Figure 5(c) in Section 4.2 illustrates the operations of Reverse LU(i0, j0, k0). It sequen-

tially uses node k = n, . . . , (k0 + 1) as an intermediate node to update each entry (s, t) of

[xij] and [succij] that satisfies i0 ≤ s < k and j0 ≤ t < k as long as xsk < ∞, xkt < ∞ and

xst > xsk + xkt.

Thus this procedure is similar to the first procedure, G LU , but proceeds in reverse

fashion. Since x∗sn and x∗nt for s ≥ i0 and t ≥ j0 will have been computed by Acyclic U(i0)

and Acyclic L(j0) respectively, Reverse LU(i0, j0, k0) computes x∗sk and x∗kt for each s

satisfying i0 ≤ s < k, each t satisfying j0 ≤ t < k, and for each k = (n − 1), . . . , k0 where

k0 := min
i
{max{si, ti}}. In particular, this procedure computes length of shortest paths

that must pass through node r in H([1, r]) for each r = n, . . . , (max{s, t} + 1) from each

origin s ≥ k0 to each destination t ≥ j0 or from each origin s ≥ i0 to each destination

t ≥ k0. Since we will have obtained the shortest distances in H([1,max{s, t}]) from each

node s ≥ i0 to each node t ≥ j0 from previous procedures, the smaller of these two distances

will be the x∗st in G. This procedure stops when shortest distances for all the requested OD

pairs are calculated.

Although this procedure calculates all shortest path lengths, not all of the paths them-

selves are known. To trace shortest paths for all the requested OD pairs by [succij], we

must set i0 = 1 and k0 = j0 in the beginning of the algorithm so that at iteration k = j0 the

successor columns j0, . . . , n are valid for tracing the shortest path tree rooted at sink node

k. Otherwise, there will exist some succst with s < i0 or t < k0 that have not been updated

by the algorithm and thus are not qualified to provide correct successor information for

85

shortest path tracing purposes.

Note that for each node k, ˆdo(k) and ˆui(k) may be modified during this procedure, since

they represent connectivity between node k and other nodes in G. In particular, if node

s ≥ i0 can only reach node t ≥ j0 via some intermediate node k > max{s, t}, this procedure

will identify that path and add arc (s, t) to ˆdo(s) if s > t, or ˆui(t) if s < t.

When solving an APSP problem on a highly connected graph, their magnitude,
∣

∣

∣

ˆdo(k)
∣

∣

∣

and
∣

∣

∣

ˆui(k)
∣

∣

∣
tend to achieve their upper bound k for each node k. The number of triple

comparisons is bounded by
n
∑

k=k0+1

(
∣

∣

∣

ˆui(k)
∣

∣

∣
·
∣

∣

∣

ˆdo(k)
∣

∣

∣
), or O((n−k0)

3) in the worst case. Note

that if we choose a node ordering such that k0 is large, then we may decrease computational

work in this procedure, but such an ordering may make the first procedure G LU and one

of the procedures Acyclic L(j0) and Acyclic U(i0) inefficient. This procedure has a time

bound n(n−1)(n−2)
3 when solving an APSP problem on a complete graph. Therefore this

procedure is O(n3) in the worst case.

4.2.5 Correctness and properties of algorithm DLU1

First we show the correctness of the algorithm, and then discuss some special properties

of this algorithm. To prove its correctness, we will show how the procedures of DLU1

calculate shortest path lengths for various subsets of OD pairs, and then demonstrate that

every OD pair must be in one such subset.

We begin by specifying the set of OD pairs whose shortest path lengths will be calculated

by Procedure G LU . In particular, G LU will identify shortest path lengths for those

requested OD pairs (s, t) whose shortest paths have all intermediate nodes with index lower

than min{s, t}.

Theorem 4.1. A shortest path in G from s to t that has a highest node with index equal

to min{s, t} will be reduced to arc (s, t) in G′ by Procedure G LU .

Proof. Suppose such a shortest path in G from s to t contains p arcs. In the case where

p = 1 and r = s or t, the result is trivial. Let us consider the case where p > 1. That is,

s := v0 → v1 → v2 → . . .→ vp−2 → vp−1 → vp := t is a shortest path in G from s to t with

(p− 1) intermediate nodes vk < min{s, t} for k = 1, . . . , (p− 1).

86

Let vα < min{s, t} be the lowest node in this shortest path. In the k = vα iteration,

G LU will modify the length of arc (vα−1, vα+1) (or add this arc if it does not exist in G′)

to be sum of the arc lengths of (vα−1, vα) and (vα, vα+1). Thus we obtain another path with

(p − 1) arcs that is as short as the previous one. G LU now repeats the same procedure

that eliminates the new lowest node and constructs another path that is just as short but

contains one fewer arc. By induction, in the min{s, t} iteration, G LU eventually modifies

(or adds if (s, t) /∈ A) arc (s, t) with length equal to which of the shortest path from s to t

in H([1,min{s, t}] ∪max{s, t}).

Therefore any arc (s, t) in G′ corresponds to a shortest path from s to t with length

xst in H([1,min{s, t}] ∪ max{s, t}). Since any shortest path in G from s to t that passes

through only intermediate nodes vk < min{s, t} corresponds to the same shortest path in

H([1,min{s, t}] ∪max{s, t}), Procedure G LU thus correctly computes the length of such

a shortest path and stores it as the length of arc (s, t) in G′.

Corollary 4.1. (a) Procedure G LU will correctly compute x∗n,n−1 and x∗n−1,n.

(b) Procedure G LU will correctly compute a shortest path for any node pair (s, t) in

H([1,min{s, t}] ∪max{s, t}).

Proof. (a) This follows immediately from Theorem 4.1, because all other nodes have index

less than (n− 1).

(b) This follows immediately from Theorem 4.1.

Now, we specify the set of OD pairs whose shortest path lengths will be calculated

by Procedure Acyclic L(j0) and Acyclic U(i0). In particular, these two procedures will

give shortest path lengths for those requested OD pairs (s, t) whose shortest paths have all

intermediate nodes with index lower than max{s, t}.

Theorem 4.2. (a) A shortest path in G from node s > t to node t that has s as its highest

node corresponds to a shortest path from s to t in G′L.

(b) A shortest path in G from node s < t to node t that has t as its highest node corresponds

to a shortest path from s to t in G′U .

87

Proof. (a) Suppose such a shortest path in G from node s > t to node t contains p arcs. In

the case where p = 1, the result is trivial. Let us consider the case where p > 1. That is,

s → v1 → v2 → . . . → vp−2 → vp−1 → t is a shortest path in G from node s > t to node t

with (p− 1) intermediate nodes vk < max{s, t} = s for k = 1, . . . , (p− 1).

In the case where every intermediate node vk < min{s, t} = t < s, Theorem 4.1 already

shows that G LU will compute such a shortest path and store it as arc (s, t) in G′L. So, we

only need to discuss the case where some intermediate node vk satisfies s > vk > t.

Suppose that r of the p intermediate nodes in this shortest path in G from s to t satisfy

s > u1 > u2 > . . . > ur−1 > ur > t. Define u0 := s, and ur+1 := t. We can break

this shortest path into (r + 1) segments: u0 to u1, u1 to u2,. . ., ur to ur+1. Each shortest

path segment uk−1 → uk in G contains intermediate nodes that all have lower index than

uk. Since Theorem 4.1 guarantees that G LU will produce an arc (uk−1, uk) for any such

shortest path segment uk−1 → uk, the original shortest path that contains p arcs in G

actually can be represented as the shortest path s → u1 → u2 → . . . → ur−1 → ur → j in

G′L.

(b) Using a similar argument to (a) above, the result follows immediately.

Corollary 4.2. (a) Procedure Acyclic L(j0) will correctly compute shortest paths in H([1, s])

for all node pairs (s, t) such that s > t ≥ j0.

(b) Procedure Acyclic U(i0) will correctly compute shortest paths in H([1, t]) for all node

pairs (s, t) such that i ≤ s < t.

(c) Procedure Acyclic L(j0) will correctly compute x∗nt for each node t ≥ j0; Procedure

Acyclic U(i0) will correctly compute x∗sn for each node s ≥ i0

Proof. (a) This procedure computes sequences of shortest path tree in G′L rooted at node

t = j0, . . . , (n − 2) from all other nodes s > t. By Theorem 4.2(a), a shortest path in G′L

from node s > t to node t corresponds to a shortest path in G from s to t where s is its

highest node since all other nodes in this path in G′L have lower index than s. In other

words, such a shortest path corresponds to the same shortest path in H([1, s]).

Including the case of t = (n− 1) and s = n as discussed in Corollary 4.1(a), the result

88

follows directly.

(b) Using a similar argument as part (a), the result again follows directly.

(c) These follow immediately from part (a) and part (b).

Finally, we demonstrate that procedure Reverse LU(i0, j0, k0) will correctly calculate

all shortest path lengths. In particular, Reverse LU(i0, j0, k0) gives shortest path lengths

for those requested OD pairs (s, t) whose shortest paths have some intermediate nodes with

index higher than max{s, t}.

Lemma 4.1. (a) Any shortest path in G from s to t that has a highest node with index

h > max{s, t} can be decomposed into two segments: a shortest path from s to h in G′U ,

and a shortest path from h to t in G′L.

(b) Any shortest path in G from s to t can be determined by the shortest of the following

two paths: (i) the shortest path from s to t in G that passes through only nodes v ≤ r,

and (ii) the shortest path from s to t in G that must pass through some node v > r, where

1 ≤ r ≤ n.

Proof. (a) This follows immediately by combining Corollary 4.2(a) and (b).

(b) It is easy to see that every path from s to t must either passes through some node

v > r or else not. Therefore the shortest path from s to t must be the shorter of the

minimum-length paths of each type.

Theorem 4.3. The kth application of Reverse LU(i0, j0, k0) will correctly compute x∗n−k,t

and x∗s,n−k for each s satisfying i0 ≤ s < (n − k), and each t satisfying j0 ≤ t < (n − k)

where k ≤ (n− k0).

Proof. After procedures Acyclic L(j0) and Acyclic U(i0), we will have obtained shortest

paths in H([1,max{s, t}]) from each node s ≥ i0 to each node t ≥ j0. To obtain the short-

est path in G from s to t, we need only to check those shortest paths that must pass through

node h for each h = (max{s, t} + 1), . . . , n. By Lemma 4.1(a), such a shortest path can

be decomposed into two segments: from s to h and from h to t. Note that their short-

est distances, xsh and xht, will have been calculated by Acyclic U(i0) and Acyclic L(j0),

89

respectively.

For each node s ≥ i0 and t ≥ j0, Corollary 4.2(c) shows that x∗nt and x∗sn will have been

computed by procedures Acyclic L(j0) and Acyclic U(i0), respectively. Define xkst to be the

shortest known distance from s to t after the kth application of Reverse LU(i0, j0, k0), and

x0
st to be the best known distance from s to t before this procedure. Now we will prove this

theorem by induction.

In the first iteration, Reverse LU(i0, j0, k0) updates x1
st := min{x0

st, x
0
sn + x0

nt} =

min{xst, x
∗
sn + x∗nt} for each node pair (s, t) satisfying i0 ≤ s < n and j0 ≤ t < n. For

node pairs (n − 1, t) satisfying j0 ≤ t < (n − 1), x∗n−1,t = min{x0
n−1,t, x

∗
n−1,n + x∗nt} by

applying Lemma 4.1(b) with r = (n − 1). Likewise, x∗s,n−1 is also determined for each s

satisfying i0 ≤ s < (n− 1) in this iteration.

Suppose the theorem holds for iteration k = k̂ < (n − max{s, t}). That is, at the

end of iteration k = k̂, Reverse LU(i0, j0, k0) gives x∗
n−k̂,t

and x∗
s,n−k̂

for each s satisfying

i0 ≤ s < (n − k̂), and each t satisfying j0 ≤ t < (n − k̂). In other words, we will have

obtained x∗n−r,t and x∗s,n−r for each r = 0, 1, . . . , k̂, and for all s ≥ i0, t ≥ j0.

In iteration k = (k̂ + 1), for each t satisfying j0 ≤ t < (n − k̂ − 1), xk̂+1

n−k̂−1,t
:=

min{xk̂
n−k̂−1,t

, xk̂
n−k̂−1,n−k̂

+xk̂
n−k̂,t

} = min{xk̂
n−k̂−1,t

, x∗
n−k̂−1,n−k̂

+x∗
n−k̂,t

} by assumption of

the induction. Note that the first term xk̂
n−k̂−1,t

has been updated k̂ times in the previ-

ous k̂ iterations. In particular, xk̂
n−k̂−1,t

= min
0≤k≤(k̂−1)

{x0
n−k̂−1,t

, x∗
n−k̂−1,n−k

+ x∗n−k,t} where

x0
n−k̂−1,t

represents the length of a shortest path in G from node (n − k̂ − 1) to node

t that has node (n − k̂ − 1) as its highest node. Substituting this new expression of

xk̂
n−k̂−1,t

into min{xk̂
n−k̂−1,t

, x∗
n−k̂−1,n−k̂

+ x∗
n−k̂,t

}, we obtain xk̂+1

n−k̂−1,t
:= min

0≤k≤k̂
{x0

n−k̂−1,t
,

x∗
n−k̂−1,n−k

+ x∗n−k,t} whose second term min
0≤k≤k̂

{x∗
n−k̂−1,n−k

+ x∗n−k,t} corresponds to the

length of a shortest path in G from node (n− k̂−1) to node t that must pass through some

higher node with index v > (n− k̂ − 1) (v may be (n− k̂), . . . , n). By Lemma 4.1(b) with

r = (n− k̂−1), we conclude xk̂+1

n−k̂−1,t
= x∗

n−k̂−1,t
for each t satisfying j0 ≤ t < (n−k). Like-

wise, xk̂+1

s,n−k̂−1
= x∗

s,n−k̂−1
for each s satisfying i0 ≤ s < (n− k̂− 1) will also be determined

in the end of iteration (k̂ + 1).

By induction, we have shown the correctness of this theorem.

90

Corollary 4.3. (a) Procedure Reverse LU(i0, j0, k0) will terminate in (n− k0) iterations,

and correctly compute x∗si,ti
for each of the requested OD pair (si, ti), i = 1, . . . , q

(b) To trace shortest path for each requested OD pair (si, ti) in Q, we have to initialize

i0 := 1 and k0 := j0 in the beginning of Algorithm DLU1.

(c) Any APSP problem can be solved by Algorithm DLU1 with i0 := 1, j0 := 1, and k0 := 2.

Proof. (a) By setting k0 := min
i
{max{si, ti}}, the set of all the requested OD pairs Q is

a subset of node pairs {(s, t) : s ≥ k0, t ≥ j0} ∪ {(s, t) : s ≥ i0, t ≥ k0} whose x∗st and

succ∗st is shown to be correctly computed by Theorem 4.3. Therefore Reverse LU(i0, j0, k0)

terminates in n− (k0+1)+1 = (n−k0) iterations and correctly computed x∗siti
and succ∗siti

for each requested OD pair (si, ti) in Q.

(b) The entries succst for each s ≥ i0 and t ≥ j0 are updated in all procedures whenever

a better path from s to t is identified. To trace the shortest path for a particular OD

pair (si, ti), we need the entire tthi column of [succ∗ij] which contains information of the

shortest path tree rooted at sink node ti. Thus we have to set i0 := 1 so that procedures

G LU , Acyclic L(j0) and Acyclic U(1) will update entries succst for each s ≥ 1 and t ≥ j0.

However, Reverse LU(1, j0, k0) will only update entries succst for each s ≥ 1 and t ≥ k0.

Thus it only gives the tth column of [succ∗ij] for each t ≥ k0 in which case some entries succst

with 1 ≤ s < k0 and j0 ≤ t < k0 may still contain incomplete successor information unless

we set k0 := j0 in the beginning of this procedure.

(c) We set i0 := j0 := 1 because we need to update all entries of the n × n distance

matrix [xij] and successor matrix [succij] when solving any APSP problem. Setting k0 := 1

will make the last iteration of Reverse LU(1, 1, k0) update x11 and succ11, which is not

necessary. Thus it suffices to set k0 := 2 when solving any APSP problem.

Algorithm DLU1 can easily identify a negative cycle. In particular, any negative cycle

will be identified in procedure G LU .

Theorem 4.4. Suppose there exists a k-node cycle Ck, i1 → i2 → i3 → . . .→ ik → i1, with

negative length. Then, procedure G LU will identify it.

91

Proof. Without loss of generality, let i1 be the lowest node in the cycle Ck, ir be the second

lowest, is be the second highest, and it be the highest node. Let length(Ck) denote the

length function of cycle Ck. Assume that length(Ck) =
∑

(i,j)∈Ck

cij < 0.

In G LU , before we begin iteration i1(using i1 as the intermediate node), the length

of some arcs of Ck might have already been modified, but no arcs of Ck will have been

removed nor will length(Ck) have increased. After we finish scanning di(i1) and uo(i1),

we can identify a smaller cycle Ck−1 by skipping i1 and adding at least one more arc

(ik, i2) to G. In particular, Ck−1 is ik → i2 → . . . → ik−1 → ik, and length(Ck−1) =

length(Ck) − (xi1i2+ xiki1 − xiki2). Since xiki2 ≤ xi1i2+ xiki1 by the algorithm, we obtain

length(Ck−1) ≤ length(Ck) < 0. The lowest-index node in Ck−1 is now ir > i1, thus we

will again reduce the size of Ck−1 by 1 in iteration k = ir.

We iterate this procedure, each time processing the current lowest node in the cycle

and reducing the cycle size by 1, until finally a 2-node cycle C2, is → it → is, with

length(C2) ≤ length(C3) ≤ . . . ≤ length(Ck) < 0 is obtained. Therefore, xtt < 0 and a

negative cycle in the augmented graph G′ is identified with cycle length smaller than or

equal to the original negative cycle Ck.

To sum up, suppose the shortest path in G from s to t contains more than one interme-

diate node and let r be the highest intermediate node in that shortest path. There are only

three cases: (1) r < min{s, t} (2) min{s, t} < r < max{s, t} and (3) r > max{s, t}. The

first case will be solved by G LU , second case by Acyclic L and Acyclic U , and third case

by Reverse LU . For any OD pair whose shortest path is a single arc, Algorithm DLU1

includes it in the very beginning and compares it with all other paths in the three cases

discussed previously.

When solving an APSP problem on an undirected graph, Algorithm DLU1 can save

half of the storage and computational work. In particular, since the graph is symmetric,

ui(k) = do(k), and uo(k) = di(k) for each node k. Therefore storing only the lower (or

upper) triangular part of the distance matrix [xij] and successor matrix [succij] is suffi-

cient for the algorithm. In addition, Procedure G LU and Reverse LU(i0, j0, k0) can save

92

half of their computation. In particular, procedure Reverse LU(i0, j0, k0) can be replaced

by Reverse LU(l0, l0, k0) where l0 := min{i0, j0} with the modification that it only up-

dates entries of the lower (or upper) triangular part of [xij] and [succij]. We can also

integrate procedures Acyclic L(j0) and Acyclic U(i0) into one procedure Acyclic L(l0) (or

Acyclic U(l0)). Thus half of the computational work can be saved. The SSSP algorithm, on

the other hand, can not take advantage of this feature of undirected graphs. In particular,

we still have to apply any SSSP algorithm (n − 1) times, each time for a different source

node, to obtain APSP.

For problems on acyclic graphs, we can reorder the nodes so that the upper (or lower)

triangle of [xij] becomes empty. Then we can skip procedure Acyclic U (or Acyclic L).

A good node ordering may practically reduce much computational work, but the best

ordering is difficult (NP-complete) to obtain. In general, an ordering that reduces fill-in

arcs in the first procedure G LU may be beneficial for the other three procedures as well.

On the other hand, an ordering that makes i0 or j0 as large as possible seems to be more

advantageous for the last three procedures, but it may create more fill-in arcs in procedure

G LU , which in turn may worsen the efficiency of the last three procedures.

Overall, the complexity of Algorithm DLU1 is O(
n−2
∑

k=1

(|di(k)|·|uo(k)|) +
n−2
∑

t=j0

n−1
∑

k=t

|di(k)| +

n−2
∑

s=i0

n−1
∑

k=s

|uo(k)| +
n
∑

k=k0+1

(
∣

∣

∣

ˆui(k)
∣

∣

∣
·
∣

∣

∣

ˆdo(k)
∣

∣

∣
)) which is O(n3) in the worst case. When solving an

APSP problem on a complete graph, the four procedures G LU , Acyclic L(1), Acyclic U(1)

and Reverse LU(1, 1, 2) will take 1
3 ,

1
6 ,

1
6 and 1

3 of the total n(n−1)(n−2) triple comparisons

respectively, which is as efficient as Carré’s algorithm and Floyd-Warshall’s algorithm in

the worst case.

Algorithm DLU1 is more suitable for dense graphs than for sparse graphs, since the

fill-in arcs we add in each procedure might destroy the graph’s sparsity. In particular, in

the beginning of procedure Reverse LU(i0, j0, k0), the distance matrix tends to be very

dense, which makes its sparse implementation less efficient.

As stated in Corollary 4.3, Algorithm DLU1 obtains shortest distances for all node pairs

(s, t) satisfying s ≥ k0, t ≥ j0 or s ≥ i0, t ≥ k0 where k0 := min
i
{max{si, ti}}. This of

93

course includes all the requested OD pairs in Q which makes it more efficient than other

algebraic APSP algorithms since other APSP algorithms usually need to update all the

n× n entries of [xij] and [succij]. However, DLU1 still does some redundant computations

for many other unwanted OD pairs..Such computational redundancy can be remedied by

our next algorithm DLU2. In addition, DLU1 has a major drawback in the computational

dependence of x∗st and succ∗st from higher nodes to lower nodes. In particular, to obtain

x∗s′t′ , we rely on the availability of x∗st′ for each s > s′ and x∗st′ for each t > t′. We propose

two ways to overcome this drawback: one is the algorithm DLU2 presented in Section 4.3,

and the other is a sparse implementation that will appear in Chapter 5.

Another drawback of this algorithm is the necessity of setting i0 := 1 for the traceability

of shortest paths. Unfortunately this is inevitable in our algorithms. However, Algorithm

DLU1 still seems to have an advantage over other algebraic APSP algorithms because it

can solve sequences of SSSP problems rather than having to solve an entire APSP problem.

Although Algorithm DLU1 has to compute a higher rooted shortest path tree to obtain

the lower rooted one, our second algorithm DLU2 and the other new sparse algorithm in

Chapter 5 can overcome such difficulty.

4.3 Algorithm DLU2

Our second MPSP algorithm, DLU2, not only obtains shortest distances x∗st faster but also

traces shortest paths more easily than DLU1. Suppose Q is the set of q OD pairs (si, ti)

for i = 1, . . . , q. Unlike DLU1(Q) that not only computes x∗st for all (s, t) in Q but also

other unrequested OD pairs, DLU2(Q) specifically attacks each requested OD pair in Q

after the common LU decomposition procedure G LU . Thus it should be more efficient,

especially for problems where the requested OD pairs are sparsely distributed in the n× n

OD matrix (i.e. only few OD pairs, but with their origin or destination indices scatteredly

ordered among [1, n]).

To cite an extreme example, suppose we want to compute shortest path lengths on a

graph with n nodes for OD pairs Q = {(1, 2), (2, 1)}. Suppose we are not allowed to alter the

node ordering (otherwise it becomes easy since we can reorder them to be {(n−1, n), (n, n−

94

2)} which can be solved by one run of G LU). Then applying Algorithm DLU1(Q), we will

end up with solving an APSP problem, which is not efficient at all. On the other hand,

Algorithm DLU2(Q) only needs two runs of its procedure Get D to directly calculate

shortest distances for each requested OD pair individually after the common procedure

G LU .

Algorithm 6 DLU2(Q := {(si, ti) : i = 1, . . . ,q})

begin

Initialize: ∀ s, xss := 0 and succss := s
∀(s, t), if (s, t) ∈ A then

xst := cst; succst := t
if s < t then add arc (s, t) to uo(s)
if s > t then add arc (s, t) to di(t)

else xst :=∞ ; succst := 0
optij := 0 ∀ i = 1, . . . , n, j = 1, . . . , n
subrowi := 0 ; subcoli := 0 ∀ i = 1, . . . , n

G LU ;
set optn,n−1 := 1, optn−1,n := 1
for i = 1 to q do

Get D(si, ti);
if shortest paths need to be traced then

if xsiti 6=∞ then

Get P (si, ti);
else there exists no path from si to ti

end

Algorithm DLU2 improves the efficiency of computing x∗siti
, succ∗siti

and shortest paths.

The first procedure G LU and the two subprocedures, Get D U(si) and Get D L(ti), are

imported from Algorithm DLU1 as in Section 4.2.1, Section 4.2.3, and Section 4.2.2. The

new procedure Get D(s′, t′) gives x∗s′t′ directly without the need of x∗st′ for each s > s′

and x∗st′ for each t > t′ as required in Algorithm DLU1. Thus it avoids many redundant

computations which would be done by DLU1.

Figure 7(b) illustrates how Get D individually solves x∗siti
for each requested OD pair

(si, ti). For example, to obtain x∗23, it first applies Get D U(2) to update x23, x24, and

x25, then updates x43, and x53 by Get D L(3). Finally it computes min{x23, (x24 + x43),

(x25 + x53)} which corresponds to x∗23. On the other hand, Algorithm DLU1 requires

computations on x∗24, x∗43, x∗25 and x∗53 which requires more works than DLU2.

95

0
0

0
0

0
0

0

0
0

0

0
0

0

0
0

0

0
0

0
0

0

0

0

0

0

0

0

0

0
0

0
0

0

0

0
0

0

00

0

0

0

0

0

0������������
����������������

X

������������
		

X

X ����

�
�

X
X

X

X X
X

���������������
������������
���������
����������

����
����

����

X

X

����

 !!

X

"�"#�#
$�$%�%&�&'�'

(�()�)*�*�*+�+�+,�,-�-
.�.�./�/�/0�01�12�23�3
4�45�56�6�67�7�7

8899
::;; <<== >>??@�@@�@A�AA�A

B�BB�BC�CC�C
DDEEFFGGH�HH�HI�II�I

J�JJ�JK�KK�K
L�LL�LM�MM�M NNOOPPQQ RRSS TTUU

VVWW XXYYZZ[[

\�\]�] ^�^_�_`�`�`a�a�a

X

X

Y

Y

b�b�bc�c�c
X

ddee

X
X

Y f�fg�g
h�hi�i

X

X
X

Xj�jj�jk�kk�k

X

XY
X

l�lm�mn�no�oX p�pq�q

X
X

Y
X

(a) Procedure G LU

(b) Procedure Get D(s, t)

Get D(5, 2)Get D(2, 3)Get D(1, 4)

3

Get P (5, 2)

1 5 4 22 13 5 4

(c) Procedure Get P (s, t)

Get P (2, 3)Get P (1, 4)

Q = {(1, 4), (2, 3), (5, 2)}

Intermediate node entry

Requested OD entry

Updated entries by Get D U

Updated entries by Min add

Updated entries by Get D L

Updated entries by G LU

Figure 7: Solving a 3 pairs shortest path problem on a 5-node graph by Algorithm DLU2(Q)

If we need to trace the shortest path from s to t, procedure Get P (s, t) will iteratively

compute all the intermediate nodes in the shortest path from s to t. Therefore, DLU2 only

does the necessary computations to get the shortest distance and path for the requested

OD pair (s, t), whereas DLU1 needs to compute the entire shortest path tree rooted at

t. For example, suppose 1 → 3 → 5 → 4 is the shortest path from node 1 to node 4 in

Figure 7(c). DLU2 first computes x∗14 and succ∗14. Based on succ∗14 = 3, which means node

3 is the successor of node 1 in that shortest path, it then computes x∗34 and succ∗34 = 5.

Finally it computes x∗54 and succ∗54 = 4, which means node 5 is the last intermediate node

in that shortest path. Thus procedure Get P (1, 4) gives all the intermediate nodes and

their shortest distances to the sink node 4. On the other hand, Algorithm DLU1 requires

additional computations on succ∗24 and succ∗25.

We introduce a new n × n optimality indicator array [optij] and two n × 1 indicator

arrays [subrowi] and [subcolj]. optij = 1 indicates that x∗ij and succ∗ij are already obtained,

and 0 otherwise. subrowi = 1 if the subprocedure Get D U(i) has already been run, and

0 otherwise. subcolj = 1 if the subprocedure Get D L(j) has already been run, and 0

otherwise. Each application of Get D U(i) gives shortest distances in G′U from node i to

96

each node t > i, and Get D L(j) gives shortest distances in G′L from each node s > j

to node j. These indicator arrays are used to avoid repeated computations in procedure

Get D. For example, to compute x∗23 and x∗13 in Figure 7(c), we only need one application of

Get D L(3) which updates x43 and x53. Since the updated x43 and x53 can also be used in

computing x∗23 and x∗13, setting subcol3 := 1 will avoid repeated applications of Get D L(3).

To obtain a shortest path tree rooted at sink node t, we set Q := {(i, t) : i 6= t, i =

1, . . . , n}. Thus setting Q := {(i, j) i 6= j, i = 1, . . . , n, j = 1, . . . , n} is sufficient to solve an

APSP problem. To trace shortest paths for q specific OD pairs Q := {(si, ti) : i = 1, . . . , q},

DLU2(Q) can compute these q shortest paths by procedure Get P without building q

shortest path trees as required in Algorithm DLU1. If, however, only shortest distances are

requested, we can skip procedure Get P and avoid many unnecessary computations. More

details will be discussed in following sections.

4.3.1 Procedure Get D(si, ti)

This procedure can be viewed as a decomposed version of the three procedures Acyclic L(j0),

Acyclic U(i0), and Reverse LU(i0, j0, k0) in Algorithm DLU1. Given an OD pair (si, ti), it

will directly compute its shortest distance in G without the need of all entries x∗st satisfying

s > si and t > ti as required by Algorithm DLU1.

Procedure Get D(si, ti)
begin

if optsiti = 0 then

if subcolti = 0 then Get D L(ti); subcolti := 1
if subrowsi

= 0 then Get D U(si); subrowsi
:= 1

Min add(si, ti);
end

Subprocedure Min add(si, ti)
begin

ri := max{si, ti}
for k = n down to ri + 1 do

if xsiti > xsik + xkti then

xsiti := xsik + xkti ; succsiti := succsiki

optsiti := 1
end

97

Subprocedure Get D L(ti) gives the shortest distance in G′L from each node s > ti

to ti, which corresponds to entries xsti obtained by Acyclic L(j0) in column ti for each

s > ti. Get D U(si) gives shortest distance in G′U from node si to each node t > si, which

corresponds to entries xsit obtained by Acyclic U(i0) in row si for each t > si.

In DLU1, to compute x∗siti
for OD pair (si, ti), we have to apply Reverse LU(si, ti, ri)

where ri := max{si, ti}, which not only updates x∗siti
but also updates other entries in the

(n−si)×(n−ti) submatrix x∗st for all (s, t) satisfying si < s < n and ti < t < n. On the other

hand in DLU2, the subprocedure Min add(si, ti) gives x∗siti
by min-addition operations only

on entries xsik and xkti for each k = (ri + 1), . . . , n. Therefore Min add(si, ti) avoids more

unnecessary updates than Reverse LU(i0, j0, k0).

For each requested OD pair (si, ti), the number of triple comparisons in Get D(si, ti)

is bounded by
n−1
∑

k=ti

|di(k)| +
n−1
∑

k=si

|uo(k)| +
n
∑

k=max{si,ti}+1

(1), or O((n−min{si, ti})
2) in the

worst case. As discussed in DLU1, reordering the node indices such that si and ti are as

large as possible may potentially reduce the computational work of Get D. However, this

may incur more fill-ins and make both G LU and Get D less efficient. Overall, when solving

a MPSP problem of q OD pairs, this procedure will take
q

∑

i=1
(
n−1
∑

k=ti

|di(k)| +
n−1
∑

k=si

|uo(k)| +

(n−max{si, ti})) triple comparisons which is O(qn2) time in the worst case. Thus in general

it is better than O(n3), the complexity of last three procedures of Algorithm DLU1. Note

that in the case where q ≈ O(n2), this procedure will take O(min{qn2, n3}) since at most

we have to apply Get D L and Get D U n times, which takes O(n3), and Min add n(n−1)

times, which takes O(n3) as well.

In the worst case when solving an APSP problem on a complete graph, DLU2 will

perform n(n−1)(n−2)
6 triple comparisons on each subprocedure Get D L and Get D U as

does DLU1. Its subprocedure Min add will have 2 ·
n−1
∑

i=1

n−1
∑

j=1,j<i
(n−max{i, j}) = n(n−1)(n−2)

3

times of triple comparisons, which is the same as Reverse LU(i0, j0, k0).

Therefore DLU2 is as efficient as DLU1 in the worst case, but should be more efficient

in general when number of OD pairs q is not large.

98

4.3.2 Procedure Get P (si, ti)

This procedure iteratively calls procedure Get D(k, ti) to update xkti and succkti for any

node k that lies on the shortest path from si to ti. Thus given an OD pair (si, ti), it will

directly compute the shortest distance label and successor for each intermediate node on

its shortest path in G, avoiding computations to other nodes that would be required in

Algorithm DLU1.

Procedure Get P(si, ti)
begin

let k := succsiti

while k 6= ti do

Get D(k, ti);
let k := succkti

end

Starting from the successor of si, we check whether it coincides with the destination ti. If

not, we update its shortest distance and successor, and then visit the successor. We iterate

this procedure until eventually the destination ti is encountered. Thus the entire shortest

path is obtained since each intermediate node on this path has correct shortest distance

and successor by the correctness of procedure Get D (see Theorem 4.5(a) in Section 4.3.3).

On the other hand, in order to trace shortest paths for OD pairs in Q by Algorithm

DLU1, we have to obtain the shortest path trees rooted at distinct destination nodes in

Q, which is better than applying the Floyd-Warshall algorithm, but is still an ”over-kill”.

Here in DLU2, procedure Get P simply does the necessary computational work to retrieve

each intermediate node lying on the shortest path. Therefore it resolves the computational

redundancy problem of DLU1 and should be more efficient.

For a particular OD pair (si, ti), obtaining x∗siti
takes O((n − min{si, ti})

2). It also

makes subcolti = 1 so that later each application of Get D(s, ti) only takes
n−1
∑

k=s

|uo(k)| +

(n − max{si, ti}) which is O((n − s)2) for each node s lying on the path from si to ti.

Suppose this shortest path contains p arcs and has lowest intermediate node i0. Then

Get P (si, ti) takes at most O(p(n − i0)
2) time. This is better than DLU1 since DLU1

requires Acyclic L(ti), Acyclic U(1) and Reverse LU(1, ti, ti}) which are O(
n−2
∑

t=ti

n−1
∑

k=t

|di(k)|

99

+
n−2
∑

s=1

n−1
∑

k=s

|uo(k)| +
n
∑

k=ti+1

(
∣

∣

∣

ˆui(k)
∣

∣

∣
·
∣

∣

∣

ˆdo(k)
∣

∣

∣
)) = O((n− 1)3) and is dominated by procedure

Acyclic U(1). In the worst case where p = (n−1) and i0 = 1, procedure Get P (si, ti) takes

O(n3) time.

When solving an APSP problem, complexity of Get P bound remains O(n3) since

it at most applies Get D L and Get D U n times, which takes O(n3) time, while the

Min add(s, t) for each s = 1, . . . , n and t = 1, . . . , n takes O(n3) time as well.

4.3.3 Correctness and properties of algorithm DLU2

First we show the correctness of this algorithm, then discuss some special properties.

Theorem 4.5. (a) Procedure Get D(si, ti) will correctly compute x∗siti
and succ∗siti

for a

given OD pair (si, ti)

(b) Procedure Get P (si, ti) will correctly compute x∗sti and succ∗sti for any node s that lies

on the shortest path in G from node si to node ti ≥ j0.

Proof. (a) After subprocedures Get D L(ti) and Get D U(si), we will have obtained short-

est paths in H([1, ri]) from si to ti where ri := max{si, ti}. To obtain the shortest path in G

from si to ti, we only need to check those shortest paths from si to ti that have highest node

h for each h = (ri + 1), . . . , n. By Lemma 4.1(a), such a shortest path can be decomposed

into two segments: from si to h and from h to ti. Note that their shortest distances, xsih

and xhti , will have been calculated by Get D U(si) and Get D L(ti), respectively. Note

also that their sum, xsih + xhti , represents the shortest distance in H([1, h]) from s to t

among paths that pass through h.

Procedure Get D(si, ti) updates xsiti := min
h>r
{xsiti , xsih + xhti}. Now we will show this

value corresponds to x∗siti
. First we consider the case where h = (ri + 1). Since xsiti is the

length of a shortest path in H([1, ri]) and xsiri + xriti represents the shortest distance in

H([1, ri]) from si to ti among paths that pass through ri, min{xsiti , xsiri + xriti} therefore

corresponds to the shortest distance in H([1, ri]) from si to ti. Applying the same argument

on min{xsiti , xsih + xhti} for h = (ri + 2), . . . , n, shows that this value will correspond to

the shortest distance in H([1, n]) from s to t, which is in fact x∗siti
, the shortest distance in

G from s to t.

100

Similarly we can show the successor succsiti is correctly updated in this procedure.

(b) Since we only apply Get P (si, ti) when x∗siti
<∞, the shortest path from si to ti is

well defined. Whenever an intermediate node k that lies on the shortest path from si to ti

is encountered, Get D(k, ti) will return x∗kti and succ∗kti . Then the procedure goes on to the

successor of node k. By induction, when ti is eventually encountered, we will have updated

x∗kti and succ∗kti for each node k on the shortest path from si to ti.

Like in Algorithm DLU1, we can save half of the storage and computational burden when

applying Algorithm DLU2 to solve an APSP problem on an undirected graph. Although

DLU2 introduces one n× n array [optij] and two n× 1 array [subrowi] and [subcolj] than

DLU1, it does not need arc adjacency arrays ui(i), ˆui(i), do(i) and ˆdo(i) for each node

i which saves up to 2n2 storage. Thus in terms of storage requirement, DLU2 requires

approximately the same storage as does DLU1.

Overall, the complexity of Algorithm DLU2(Q) is O(
n−2
∑

k=1

(|di(k)| · |uo(k)|) +
q

∑

i=1
(
n−1
∑

k=ti

|di(k)| +
n−1
∑

k=si

|uo(k)| + (n−max{si, ti})) + O(qp(n− i0)
2)) where q is number of requested

OD pairs, p is the maximal number of arcs contained among all the requested shortest paths,

and i0 is the lowest intermediate node appeared among all the requested shortest paths. This

time bound is O(n3) in the worst case, mostly contributed by procedure G LU when q < n2.

When solving an APSP problem on a complete graph, we can skip procedure Get P . The

other two procedures, G LU and Get D, will take 1
3 and 2

3 of the total n(n−1)(n−2) triple

comparisons respectively, which is as efficient as Algorithm DLU1 and the Floyd-Warshall

algorithm in the worst case.

All the discussion of node ordering in DLU1 also applies to DLU2. In other words,

techniques to reduce the fill-in arcs in G LU or to make the indices of the requested origin

and destination nodes as large as possible can similarly reduce the computational work of

DLU2.

In general, when solving a MPSP problem of q < n2 OD pairs, Algorithm DLU2 saves

more computational work in the last procedures than Algorithm DLU1. Unlike DLU1

which has to compute the full shortest path tree rooted at t so that the shortest path for

101

a specific OD pair (s, t) can be traced, DLU2 can retrieve such a path by successively

trespassing each intermediate node on that path, and thus it is more efficient.

4.4 Summary

In this chapter we propose two new algorithms called DLU1 and DLU2 that are suitable for

solving MPSP problems. Although their worst case complexity O(n3) is no more efficient

than other algebraic APSP algorithms such as Floyd-Warshall [113, 304] and Carré’s [64, 65]

algorithms, our algorithms can, in practice, avoid significant computational work in solving

MPSP problems.

First obtaining the shortest distances from or to the last node n, algorithm DLU1(i0,

j0, k0) systematically obtains shortest distances for all node pairs (s, t) such that s ≥ k0,

t ≥ j0 or s ≥ i0, t ≥ k0 where k0 := min
i
{max{si, ti}}. By setting i0 := 1, it can be used to

build the shortest path trees rooted at each node t ≥ k0. When solving MPSP problems,

this algorithm may be sensitive to the distribution of requested OD pairs and the node

ordering. In particular, when the requested OD pairs are closely distributed in the right

lower part of the n × n OD matrix, algorithm DLU1 can terminate much earlier. On the

other hand, scattered OD pairs might make the algorithm less efficient, although it will

still be better than other APSP algorithms. A bad node ordering may require many ”fill-

ins.” These fill-ins make the modified graph denser, which in turn will require more triple

comparisons when applying our algorithms. Such difficulties may be resolved by reordering

the node indices so that the requested OD pairs are grouped in a favorable distribution

and/or the required number of fill-in arcs is decreased.

Algorithm DLU2 attacks each requested OD pair individually, so it is more suitable for

problems with a scattered OD distribution. It also overcomes the computational inefficiency

that algorithm DLU1 has in tracing shortest paths. It is especially efficient for solving a

special MPSP problem of n OD pairs (si, ti) that correspond to a matching. That is, each

node appears exactly once in the source and sink node set but not the same time. Such

an MPSP problem requires as much work as an APSP problem using most of the shortest

path algorithms known nowadays, even though only n OD pairs are requested.

102

Our algorithms (especially DLU2) are advantageous when only the shortest distances

between some OD pairs are required. For a graph with fixed topology, or a problem with

fixed requested OD pairs where shortest paths have to be repeatedly computed with differ-

ent numerical values of arc lengths, our algorithms are especially beneficial since we may do

a preprocessing step in the beginning to arrange a good node ordering that favors our algo-

rithms. These problems appear often in real world applications. For example, when solving

the origin-destination multicommodity network flow problem (ODMCNF) using Dantzig-

Wolfe decomposition and column generation[36], we generate columns by solving sequences

of shortest path problems between some fixed OD pairs where the arc cost changes in each

stage but the topology and requested OD pairs are both fixed. Also, in the computation of

parametric shortest paths where arc length is a linear function of some parameter, we may

solve shortest distances iteratively on the same graph to determine the critical value of the

parameter.

Our algorithms can deal with graphs containing negative arc lengths and detect negative

cycles as well. The algorithms save storage and computational work for problems with

special structures such as undirected or acyclic graphs.

Although we have shown the superiority of our algorithms over other algebraic APSP

algorithms, it is, however, still not clear how our algorithms perform when they are com-

pared with modern SSSP algorithms empirically. Like all other algebraic algorithms in

the literature, our algorithms require O(n2) storage which makes them more suitable for

dense graphs. We introduced techniques of sparse implementation that avoid nontrivial

triple comparisons, but they come with the price of extra storage for the adjacency data

structures.

A more thorough computational experiment to compare the empirical efficiency of DLU1

and DLU2 with many modern SSSP and APSP algorithms is conducted in Chapter 5, in

which we introduce additional sparse implementation techniques that lead to promising

computational results.

103

