
CHAPTER V

IMPLEMENTING NEW MPSP ALGORITHMS

Many efficient SSSP and APSP algorithms and their implementations have been proposed

in the literature. However, only few of them are targeted to solving the MPSP problems

or problems with fixed topology but changeable arc lengths or requested OD pairs. These

problems of course can be solved by repeated SSSP algorithms. Other methods such as

the LP-based reoptimization algorithms (see Section 3.5.2) take advantage of previous op-

timal shortest paths and perform either primal network simplex methods (when arc lengths

change) or dual network simplex methods (when OD pairs change). More recent compu-

tational experiments [58] indicate these reoptimization algorithms are still inferior to the

repeated SSSP algorithms which repeatedly solve shortest path trees for different requested

origins (or destinations, depending on which one has smaller cardinality).

A practical implementation of Carré’s algorithm [65] by Goto et al. [150] tries to ex-

ploit the sparseness and topology of the networks. For networks with fixed topology, their

implementation first does a preprocessing procedure to identify a good node pivoting order

so that the fill-ins in the LU decomposition phase are decreased. To avoid unnecessary

triple comparisons, they record all the nontrivial triple comparisons in the LU decomposi-

tion, forward elimination and backward substitution phases, and then generate an ad hoc

APSP code. Their method only stores O(m) data structures, which is the same as other

combinatorial SSSP algorithms but is better than O(n2) as required in general algebraic

algorithms. However, this comes with the price of storing the long codes of nontrivial triple

comparisons, and may require more total hardware storage. Even worse, the long codes

may not be compilable for some compilers.

In particular, we have tested a 1025-node, 6464-arc sparse graph and generated a 500MB

long code using the code generation algorithm of Goto et al. [150]. The code we generated

could not be compiled even on a fast Sun workstation with 1GB memory using gcc, a C
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compiler by GNU, with optimization tags. If instead we only store the arc index of all the

triple comparisons, the code will be short but still need temporary storage around 200MB

to store these indices. Therefore, code generation is not practical for large networks.

In this chapter, we observe that Carré’s algorithm can be implemented combinatorially

which resolves the need of a huge storage quota by the code generation. Furthermore,

we can decompose and truncate Carré’s algorithm according to the indices of the distinct

origins/destinations of the requested OD pairs. Section 5.1 introduces some notation and

definitions appearing in this chapter. Section 5.2 describes major procedures of our algo-

rithm SLU , a sparse combinatorial implementation of Carré’s algorithm. Section 5.3 gives

detailed implementation issues, and techniques for speeding up SLU . Implementations of

algorithm DLU2, our proposed MPSP algorithm that appeared in Section 4.3, are given in

Section 5.4. Computational experiments including a sparse implementation of the Floyd-

Warshall algorithm, many state-of-the-art SSSP codes written by Cherkassky et al. [74],

and networks that we generate, are presented in Section 5.5. Section 5.6 shows results of

our computational experiments and draws conclusions.

5.1 Notation and definition

Most of the notation and definitions appearing in this chapter can be found in previous

chapters. In particular, see Section 4.2.1 for the definition of the augmented graph G′and

its induced subgraphs G′
L and G′

U , triple comparison, and fill-in arcs. See Section 4.1 for

the definition of arc adjacency lists ui(i), uo(i), di(i), and do(i), and the subgraph denoted

by H(S) induced on the node set S. See Section 3.4.1.1 for Carré’s algorithm, Section 4.2

for algorithm DLU1, and Section 4.3 for algorithm DLU2.

Let A′ denote the arc set of G′ with cardinality |A′| = m′. Let [aij ] denote a n × n

matrix with m′ nonzero entries, each of which represents the arc index of an arc in G′. We

create four arrays of size m′, head(aij), tail(aij), c(aij) and succ(aij), to store the head,

tail, arc length and successor for each arc (i, j) ∈ A′ with index aij .

Instead of maintaining the n × n distance matrix [xij ] and successor matrix [succij ] as

algorithm DLU does in Section 3.2, for each distinct destination node j, algorithm SLU uses
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two n dimensional vectors dn(i) and succn(i) to denote the shortest distance from each node

i to node j and the successor of each node i in the shortest path to node j, respectively.

A n × 1 indicator vector label(i) indicates whether a node i is labeled (label(i) = 1) or

not (label(i) = 0). After all the requested shortest distance lengths and successors for

the requested OD pairs with the same destination node j have been computed, dn(i) and

succn(i) will be reset for the next destination node.

5.2 Algorithm SLU

Algorithm SLU can be viewed as an efficient sparse implementation of Carré’s algorithm

which resembles Gaussian elimination. The algorithm first performs a preprocessing proce-

dure, Preprocess, to determine a good node ordering to reduce the number of fill-ins created

by LU decomposition. Using the new node ordering, the topology (i.e., ui(k), uo(k), di(k),

and do(k) for each node k) of the augmented graph G′ is symbolically created. Suppose we

want to compute shortest path lengths for a set of OD pairs Q = {(si, ti) : i = 1, . . . , q}

which contain q̂ distinct destination nodes. For each distinct destination node t̂i, Preprocess

also determines the lowest indexed origin node st̂i
that appears in Q. That is, for each dis-

tinct t̂i, st̂i
:= min

i
{si : (si, t̂i) ∈ Q}.

Algorithm 7 SLU(Q := {(si, ti) : i = 1, . . . ,q})

begin
Preprocess;
G LU0;
for each distinct destination node t̂i do

reset label(k) = 0, dn(k) = M , succn(k) = 0 ∀k ∈ N \ {t̂i}; dn(t̂i) = 0
G Forward(t̂i);
G Backward(st̂i

, t̂i);
end

Based on the topology of G′, SLU does a Gaussian elimination procedure G LU0, and

q̂ iterations of procedure G Forward(t̂i) followed by procedure G Backward(st̂i
, t̂i). All

these three major procedures are ”combinatorial” in a sense that they only operate on

nodes and arcs of G′. In particular, for nodes k = 1, . . . , (n− 2), G LU0 scans each arc of

di(k) (with tail node s) and each arc of uo(k) (with head node t) and updates the length

and successor of arc (s, t) in G′. Procedure G Forward(t̂i) can be viewed as computing
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shortest path lengths from each node s > t̂i to node t̂i on the acyclic induced subgraph

G′
L. Based on the distance label computed by Procedure G Forward(t̂i) for each node

s > t̂i, procedure G Backward(st̂i
, t̂i) computes shortest distance lengths in G′

U for nodes

s = (n− 1), . . . , st̂i
. Thus, unlike other shortest path algorithms that work on the original

graph G, algorithm SLU works on the augmented graph G′. The sparser the augmented

graph G′ is, the more efficient SLU becomes.

After application of G Backward(st̂i
, t̂i), we have computed the shortest distance d∗

t̂i
(s)

for every node pair (s, t̂i) satisfying s ≥ st̂i
. Therefore after q̂ iterations of G Forward(t̂i)

and G Backward(st̂i
, t̂i) for each distinct destination node t̂i, algorithm SLU will give the

shortest distance d∗ti(si) for all the requested OD pairs (si, ti) in Q.

5.2.1 Procedure Preprocess

This procedure determines the topology of the augmented graph G′ by first determining

a good node ordering and then performing a symbolic run of the procedure G LU0 which

determines all the arc adjacency data structures of G′ (i.e., di(k), uo(k) and ui(k) for each

node k). In particular, G LU0 requires di(k) and uo(k), G Forward requires di(k), and

G Backward requires ui(k) for each node k. di(k), uo(k) and ui(k) store the indices of

the arcs that point up-inwards, down-inwards and up-outwards for each node k. These arc

indices can be computed beforehand in Preprocess so that only O(m′) entries are required

instead of O(n2) entries.

Procedure Preprocess
begin

Decide a node ordering perm(k) for each node k;
Symbolic execution of procedure G LU to determine the arc adjacency list

di(k), uo(k), and ui(k), for each node k of the augmented graph G′ ;
for each distinct destination node t̂i do

if shortest paths need to be traced then

set st̂i
:= 1

else set st̂i
:= min

i
{si : (si, t̂i) ∈ Q}

Initialize: ∀(s, t) ∈ A′, if (s, t) ∈ A with index ast then

c(ast) := cst; succ(ast) := t
else c(ast) := M ; succ(ast) := 0

end
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The node ordering may be computed by many common techniques used in linear algebra

to reduce fill-ins in LU decomposition. Most of the ordering techniques are based on the

rationale of reducing fill-ins in the LU decomposition. In terms of path algebra, these

methods try to create fewer artificial arcs when constructing the augmented graph G′. This

rationale is especially effective for APSP problems since fewer artificial arcs will incur fewer

triple comparisons in all of the three major procedures of SLU .

For MPSP problems, another ordering rationale based on the requested OD pairs may

also be effective. In particular, the LU decomposition procedure does more triple compar-

isons for arcs with head and tail that are high-indexed. Thus, shortest distances between

nodes with higher indices are usually computed earlier than nodes with lower indices. In

other words, we may save some computational work by using an ordering that permutes

nodes of the requested OD pairs to be as close and high as possible. Since such ordering

rationale may in fact incur more fill-ins in the LU decomposition phase and is too problem-

dependent and intractable, we do not use this ordering in our computational tests.

The node ordering is a permutation function perm(k) that permutes node k in the origi-

nal ordering to node perm(k) in the new ordering. We also maintain an inverse permutation

function, iperm(k), where node k in the new ordering corresponds to node iperm(k) in the

original ordering.

After choosing a good ordering perm, we can construct the augmented graph G′ by a

symbolic run of the procedure G LU0. For convenience, all the notation referring to node

index in this chapter is in the new ordering. That is, when we say i > j, we actually mean

perm(i) > perm(j).

In the symbolic execution of G LU0, for each arc (i, j) in G′, we store its index (aij),

head (head(aij) = j), tail (tail(aij) = i), and length (c(aij) = cij if arc (i, j) is in the

original graph, or otherwise c(aij) = M , a very large number). We also store the topology

information of G′ in di(k), ui(k) and uo(k) for each node k.

The most two expensive operations in procedure Preprocess are (1) identifying a fill-in

reducing ordering, which may be NP -hard and (2) the symbolic run of procedure G LU0.

108



We do not take the preprocessing time into consideration when comparing with other short-

est path algorithms in our computational experiments. This may sound unfair; however, if

we consider our problem as solving a MPSP on a graph with fixed topology but changeable

arc lengths many times for days or even for years, the one-time execution of the preprocess-

ing procedure would indeed be negligible.

In the initialization step, we first read the result of the preprocessing. That is, we read

perm(k), iperm(k), di(k), ui(k) and uo(k) for each node k, and head(aij), tail(aij), and

x(aij) for each arc (i, j) in G′. We initiate succn(aij) = j for each arc (i, j) in A.

5.2.2 Procedure G LU0

This procedure is the same as the procedure G LU introduced in Section 4.2.1, except it

uses the m′×1 arrays c(aij) and succ(aij) to store the length and successor of arc aij instead

of the n× n arrays xij and succij of algorithm DLU .

Procedure G LU0
begin

for k = 1 to n− 2 do

for each arc (s, k) ∈ di(k) with index ask do

for each arc (k, t) ∈ uo(k) with index akt do

if s = t and c(ask) + c(akt) < 0 then

Found a negative cycle; STOP

if s 6= t then

let arc (s, t) have index ast ;
if c(ast) > c(ask) + c(akt)

c(ast) := c(ask) + c(akt) ; succ(ast) := succ(ask) ;
end

Note that this procedure can detect negative cycle. The total number of triple compar-

isons is bounded by O(
n−2∑
k=1

(|di(k)| · |uo(k)|)), or O(n3) in the worst case. It is n(n−1)(n−2)
3

on a complete graph.

5.2.3 Procedure G Forward(t̂i)

This procedure is exactly the same as the subprocedure Get D L(t̂i) introduced in Section

4.2.2 which gives the shortest distance dn(s) in G′
L from each node s > t̂i to node t̂i. It

is a sparse implementation of triple comparisons s → k → t̂i for any node s and node k

satisfying s > k > t̂i.
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Procedure G Forward(t̂i)
begin

initialize dn(t̂i) := 0, dn(k) := M ∀ k 6= t̂i
put node t̂i in LIST
while LIST is not empty do

remove the lowest node k in LIST
label(k) = 1
for each arc (s, k) ∈ di(k) with index ask do

if s /∈ LIST , put s into LIST
if dn(s) > dn(k) + c(ask) then

dn(s) := dn(k) + c(ask) ; succn(s) := succ(ask)
end

The distance label dn(s) actually corresponds to the shortest distance in H([1, s]) from

each node s > t̂i to node t̂i (see Corollary 4.2(a) in Section 4.2.5). Suppose the highest

labeled node in this procedure has index s̃t̂i
. It can be shown that there exists no path

in G from any node s > s̃t̂i
to node s̃t̂i

. Also, the distance label dn(s̃t̂i
) computed by this

procedure in fact corresponds to the shortest distance (i.e., d∗n(s̃t̂i
)) in G from node s̃t̂i

to

node t̂i (see Corollary 5.2 in Section 5.2.5).

The total number of triple comparisons in G Forward(t̂i) is bounded by
∑
k

|di(k)|,

where k are the index of labeled nodes. In the worst case, this bound is
n−1∑

k=t̂i

|di(k)| and will

be O(n2) for a complete graph. In general, for a MPSP problem, this procedure requires

∑

t̂i∈Q

n−1∑

k=t̂i

|di(k)| triple operations. When we are solving an APSP problem on a complete

graph, the total number of triple comparisons incurred by this procedure will be n(n−1)(n−2)
6 .

The key to speeding up this procedure is to choose the lowest labeled node in LIST as

quickly as possible. We detail three different implementations in Section 5.3.3.

5.2.4 Procedure G Backward(st̂i
, t̂i)

Since none of the nodes with index higher than s̃t̂i
, the highest labeled node after G Forward

(t̂i), can reach node t̂i in G (see Corollary 5.2(b) in Section 5.2.5), we only need to

check nodes with index lower than or equal to s̃t̂i
. The distance label dn(k) computed

by G Forward(t̂i) represents the shortest distance in H([1, k]) from node k ≥ t̂i to node t̂i.

Starting from the highest labeled node s̃t̂i
and based on the previously computed distance
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label, G Backward(st̂i
, t̂i) efficiently computes shortest path lengths in G from each node

s ≥ st̂i
to node t̂i. It is a sparse implementation of triple comparisons s → k → t̂i for any s

and k such that st̂i
≤ s < k ≤ s̃t̂i

.

Procedure G Backward(st̂i , t̂i)
begin

put all the labeled nodes with index higher than or equal to st̂i
into LIST

while LIST is not empty do

remove the highest node k in LIST
label(k) = 1
for each arc (s, k) ∈ ui(k) with index ask do

if s ≥ st̂i
and s 6= t̂i then

if s /∈ LIST , put s into LIST ; label(s) = 1
if dn(s) > dn(k) + c(ask) then

dn(s) := dn(k) + c(ask) ; succn(s) := succ(ask)
end

In particular, for any labeled node s ≥ st̂i
, there exist paths in G to node t̂i. Let node

s̃ be the highest node in the shortest path from s to t̂i. Then this path can be decomposed

into two parts: s → s̃ and s̃ → t̂i. The shortest distance d∗n(s̃) from s̃ to t̂i in the second

part is already computed by G Forward(t̂i). The shortest distance from s to s̃ in the first

part will be computed by G Backward(st̂i
, t̂i). Thus, this procedure sequentially computes

d∗n(s) for s = s̃, s̃− 1, . . . , st̂i
.

The total number of triple comparisons in G Backward(st̂i
, t̂i) is bounded by

∑
k

|ui(k)|,

where k are the index of the set of nodes that have ever been labeled. In the worst case, this

bound is
n∑

k=st̂i
+1

|ui(k)|, and will be O(n2) for a complete graph. In general, for a MPSP

problem, this procedure requires
∑

st̂i
∈Q

n∑
k=st̂i

+1

|ui(k)| triple operations. When we are solving

an APSP problem on a complete graph, st̂i
= 1 for each t̂i (t̂i = 1, . . . , n), and the total

number of triple comparisons incurred by this procedure will be n(n−1)(n−2)
2 .

The key to speeding up this procedure is to choose the highest labeled node in LIST as

quickly as possible. We give three different implementations to speed up both G Forward(t̂i)

and G Backward(st̂i
, t̂i) in Section 5.3.3.
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5.2.5 Correctness and properties of algorithm SLU

First we show the correctness of the algorithm, and then discuss some special properties of

this algorithm. To prove its correctness, we will show how the procedures of SLU calculate

shortest path lengths for various subsets of the requested OD pairs Q, and then demonstrate

that every requested OD pair must be in one such subset.

Without loss of generality, we only discuss the case with one OD pair Q = {(st̂i
, t̂i)} since

if there is more than one distinct requested destination node t̂j , we simply repeat the same

procedures for each t̂j . Also, if there is more than one distinct origin node, say, s1, . . . sq, for

the same destination node t̂i, we only require the one with lowest index st̂i
= min{s1, . . . sq}

for G Backward(st̂i
, t̂i). Thus it suffices to show that algorithm SLU((st̂i

, t̂i)) computes

the shortest path lengths in G for all the node pairs (s, t̂i) satisfying s ≥ st̂i
. To trace

the shortest path from any node s to node t̂i, we have to set st̂i
= 1 and apply algorithm

SLU((1, t̂i)).

We begin by specifying the set of OD pairs whose shortest path lengths will be calculated

by G LU0. In particular, G LU0 will identify shortest path lengths for those requested OD

pairs (s, t) whose shortest paths have all intermediate nodes with index lower than min{s, t}.

Theorem 5.1. A shortest path in G from s to t that has a highest node with index equal

to min{s, t} will be reduced to arc (s, t) in G′ by Procedure G LU0.

Proof. Same as Theorem 4.1 in Section 4.2.5.

Corollary 5.1. Procedure G LU0 will correctly compute a shortest path for any node pair

(s, t) in H([1,min{s, t}] ∪max{s, t}).

Proof. This follows immediately from Theorem 5.1.

Now, we specify the set of OD pairs whose shortest path lengths will be calculated by

Procedure G Forward(t̂j). In particular, this procedure will give shortest path lengths for

OD pairs (s, t̂j) satisfying s > t̂j and these shortest paths have all intermediate nodes with

index lower than s.
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Theorem 5.2. (a) A shortest path in G from node s > t to node t that has s as its highest

node corresponds to a shortest path from s to t in G′
L.

(b) A shortest path in G from node s < t to node t that has t as its highest node corresponds

to a shortest path from s to t in G′
U .

Proof. Same as Theorem 4.2 in Section 4.2.5.

Lemma 5.1. (a) Any shortest path in G from s to t that has a highest node with index

h > max{s, t} can be decomposed into two segments: a shortest path from s to h in G′
U ,

and a shortest path from h to t in G′
L.

(b) Any shortest path in G from s to t can be determined by the shortest of the following

two paths: (i) the shortest path from s to t in G that passes through only nodes v ≤ r,

and (ii) the shortest path from s to t in G that must pass through some node v > r, where

1 ≤ r ≤ n.

Proof. (a) This follows immediately by combining Corollary 5.2(a) and (b).

(b) It is easy to see that every path from s to t must either pass through some node

v > r or else not. Therefore the shortest path from s to t must be the shorter of the

minimum-length paths of each type.

Corollary 5.2. (a) Procedure G Forward(t̂j) will correctly compute shortest paths in

H([1, s]) for all node pairs (s, t̂j) such that s > t̂j.

(b) Suppose the highest labeled node has index s̃t̂i
after procedure G Forward(t̂j). Then

(i) there exists no path in G from node s > s̃t̂i
to node t̂j, and

(ii) dn(s̃t̂i
) computed by G Forward(t̂j) represents the shortest path length d∗n(s̃t̂i

) from

node s̃t̂i
to node t̂j.

Proof. (a) G Forward(t̂j) computes shortest path length in G′
L rooted at node t̂j from all

other nodes s > t̂j . By Theorem 5.2(a), a shortest path in G′
L from node s > t̂j to node t̂j

corresponds to a shortest path in G from s to t̂j where s is its highest node since all other

nodes in this path in G′
L have lower index than s. In other words, such a shortest path

corresponds to the same shortest path in H([1, s]).
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(b.i) Suppose there exists at least one path in G from node s > s̃t̂i
to node t̂j . Let s̃ be

the highest indexed intermediate node in the shortest path from s to t̂j . By Lemma 5.1(a),

there exists a path in G′
L from s̃ to t̂j ; thus s̃ will be labeled by G Forward(t̂j). Since

s̃ ≥ s > s̃t̂i
, s̃t̂i

will not be the highest labeled node, a contradiction. Thus no node with

index higher than s̃t̂i
can reach node t̂j in G.

(b.ii) By (b.i) we know there exists no path from node s̃t̂i
to any other node with higher

index. Thus the shortest path in H([1, s̃t̂i
]) corresponds to the shortest path in G. Thus

dn(s̃t̂i
) = d∗n(s̃t̂i

).

Finally, we demonstrate that procedure G Backward(st̂i
, t̂i) will correctly calculate all

shortest path lengths for node pairs (s, t̂i) satisfying s ≥ st̂i
. In particular, G Backward(st̂i

,

t̂i) gives shortest path lengths for those requested OD pairs (s, t̂i) whose shortest paths have

some intermediate nodes with index higher than max{s, t̂i}.

Theorem 5.3. Suppose in the pth iteration of procedure G Backward(st̂i
, t̂i), when the

highest labeled node s̃p

t̂i
in LIST is removed , dn(s̃

p

t̂i
) = d∗n(s̃

p

t̂i
) is determined.

Proof. By Corollary 5.2(c), dn(s̃t̂i
) = d∗n(s̃t̂i

) for the highest labeled node s̃t̂i
in the beginning

of procedure G Backward(st̂i
, t̂i).

When node s̃t̂i
is removed from LIST , G Backward(st̂i

, t̂i) update dn(s) for each node

s that connects to node st̂i
by an arc (s, s̃t̂i

) in G′
U . That is, dn(s) = min{dn(s), c(ass̃t̂i

) +

d∗n(s̃t̂i
)}. Let s̃′

t̂i
be the current highest labeled node in LIST . dn(s̃

′
t̂i
) represents the shortest

distance in H([1, s̃′
t̂i
]) from node s̃′

t̂i
to node t̂i. If there exists no arc (s̃′

t̂i
, s̃t̂i

) in G′
U , then

obviously dn(s̃
′
t̂i
) = d∗n(s̃

′
t̂i
) since there exists no path from node s̃′

t̂i
to node t̂i that has

intermediate node with index higher than s̃′
t̂i
.

If there exists arc (s̃′
t̂i
, s̃t̂i

) in G′
U , then c(as̃′

t̂i
s̃t̂i

)+d∗n(s̃t̂i
) represents the shortest distance

in H([1, s̃′
t̂i
] ∪ s̃t̂i

). By Lemma 5.1(b) with s = s̃′
t̂i
, t = t̂i and r = s̃′

t̂i
, we can conclude

dn(s̃
′
t̂i
) = min{dn(s̃

′
t̂i
), c(as̃′

t̂i
s̃t̂i

) + d∗n(s̃t̂i
)} = d∗n(s̃

′
t̂i
).

Using similar arguments, suppose in the pth iteration, we remove the highest labeled

node s̃p

t̂i
from LIST . dn(s̃

p

t̂i
) = min{dn(s̃

p

t̂i
), c(a

s̃
p

t̂i
s̃
p−1

t̂i

)+d∗n(s̃
p−1

t̂i
), c(a

s̃
p

t̂i
s̃
p−2

t̂i

)+d∗n(s̃
p−2

t̂i
), . . . ,

c(as̃
p

t̂i
s̃′
t̂i

) + d∗n(s̃
′
t̂i
), c(as̃

p

t̂i
s̃t̂i

) + d∗n(s̃t̂i
)} = d∗n(s̃

p

t̂i
) by induction.
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Corollary 5.3. (a) Procedure G Backward(st̂i
, t̂i) terminates when node st̂i

is the only

node in LIST , and correctly computes d∗n(s) for each node s ≥ st̂i
.

(b) To trace the shortest path for OD pair (s, t̂i), we have to initialize st̂i
:= 1 in the

beginning of Algorithm SLU .

Proof. (a) By Theorem 5.3, if node s ≥ st̂i
has been labeled by G Backward(st̂i

, t̂i), its

label dn(s) = d∗n(s). For a unlabeled node s ≥ st̂i
, there exists no path from s to t̂i in

G′, which means no path exists from s to t̂i in G; thus its distance label remains M (i.e.,

infinity).

(b) The entries succn(s) for each s ≥ st̂i
are updated in all procedures whenever a better

path from s to t̂i is identified. To trace the shortest path for a particular OD pair (si, t̂i), we

need the entire t̂i
th

column of [succ∗ij ] which contains information of the shortest path tree

rooted at sink node t̂i. Thus we have to set st̂i
:= 1 so that procedure G Backward(st̂i

, t̂i)

will update entries succn(s) for each s ≥ 1.

Algorithm SLU can easily identify a negative cycle. In particular, any negative cycle

will be identified in procedure G LU0.

Theorem 5.4. Suppose there exists a k-node cycle Ck, i1 → i2 → i3 → . . .→ ik → i1, with

negative length. Then, procedure G LU0 will identify it.

Proof. Same as Theorem 4.4 in Section 4.2.5

To summarize, suppose the shortest path in G from st̂i
to t̂i contains more than one

intermediate node and let r be the highest intermediate node in that shortest path. If

st̂i
> t̂i, there are three cases: (1) r < t̂i (2) t̂i < r < st̂i

and (3) r > st̂i
. The first case will

be solved by G LU0, second case by G Forward(t̂i), and third case by G Backward(st̂i
, t̂i).

If st̂i
< t̂i, there are three cases: (1) r < st̂i

(2) s < r < t̂i and (3) r > t̂i > s. The first

case will be solved by G LU0, and the second and third cases by G Forward(t̂i) and

G Backward(st̂i
, t̂i). In particular, G Forward(t̂i) only computes dn(k) for node k > t̂i.

G Backward(st̂i
, t̂i) sequentially computes d∗n(k) for node k = n, . . . , st̂i

.
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To compute shortest path lengths for other OD pairs with the same destination ˆti+1 6=

t̂i, we simply reset dn(k) and succn(k) for each node k, and start G Forward( ˆti+1) and

G Backward(s ˆti+1
, ˆti+1), without redoing G LU0. Procedure G LU0 only requires to be

reapplied when arc lengths are changed.

When solving an APSP problem on an undirected graph, algorithm SLU becomes the

same as Carré’s algorithm [65], but it can save some storage and computational work com-

pared with most shortest path algorithms. In particular, since the graph is symmetric,

ui(k) = do(k), and uo(k) = di(k) for each node k. Therefore storing only the arcs (i, j)

where i > j in G′ is sufficient. Special care may be required for paths using arcs in G′
U .

For example, we need an additional m′ dimensional successor vector, succ′(aij), to store

the successor of arc (j, i) where i > j. In addition, Procedure G LU0 can save half of its

computation due to the symmetric structure.

For problems on acyclic graphs, we can reorder the nodes so that all the arcs after

reordering point from higher nodes to lower nodes (or from lower nodes to higher nodes).

Thus only the procedure G Forward (or G Backward) is required, which is the same as

the topological ordering method on acyclic graph.

Algorithm SLU is an efficient sparse implementation of Carré’s algorithm. It depends

on the topology of G′. The running time of these three procedures mainly depend on

the m′, the number of arcs in G′. In particular, the complexity of Algorithm SLU is

O(
n−2∑
k=1

(|di(k)| · |uo(k)|) +
∑

t̂i∈Q

n−1∑

k=t̂i

|di(k)| +
∑

st̂i
∈Q

n∑
k=st̂i

+1

|ui(k)|) which is O(n3) in the worst

case. When solving an APSP problem on a complete graph, the three procedures G LU0,

G Forward(k), and G Backward(1, k) for k = 1, . . . , n will take 1
3 ,

1
6 and 1

2 of the total

n(n − 1)(n − 2) triple comparisons respectively, which is as efficient as Carré’s algorithm

and Floyd-Warshall’s algorithm in the worst case.

In some sense, computing the shortest distance for node pairs (s, t̂i) satisfying s ≥ st̂i

can be viewed as computing the (s, t̂i) entry of the ”inverse” of matrix (In − C) in path

algebra (see Section 3.4.1). After obtaining L and U from the LU decomposition (i.e.,

G LU0), we can do the forward elimination (i.e., G Forward(t̂i)) L ⊗ yt̂i
= b, where the

right hand side b is the t̂i
th

column of the identity matrix In. In particular, yst̂i
represents
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the shortest distance in G′
L from node s to node t̂i, where s > t̂i. The backward substitution

(i.e., G Backward(st̂i
, t̂i)) U ⊗xt̂i

= yt̂i
computes the shortest distance xst̂i

in G from node

s to node t̂i, for s = n, . . . , st̂i
.

Carré’s algorithm is algebraic and computes the ALL-ALL distance matrix. Algorithm

SLU can be viewed as a truncated and decomposed sparse implementation of Carré’s al-

gorithm. In particular, SLU first ”decomposes” Carré’s algorithm columnwise by the re-

quested destination nodes, and then the backward substitution is ”truncated” as soon as

all of the requested origins associated with the same destination are computed. Algorithm

SLU terminates when all the requested OD pairs are computed; thus it skips many unnec-

essary triple comparisons that are required in Carré’s algorithm, and is more efficient for

solving MPSP problems.

Compared with algorithm DLU2 introduced in Section 4.3, algorithm SLU takes more

advantage of the sparse topology of G′. Algorithm DLU2, on the other hand, requires

more storage (O(n2) in general) than SLU (O(m′)). Procedures G LU and Get D L of

algorithm DLU2 have the same number of total operations as the procedures G LU0 and

G Forward of algorithm SLU . However, it is difficult to tell which of these two algorithms

(i.e., algorithms DLU2 and SLU) is more efficient.

In particular, procedures Get D U and Min add of algorithm DLU2 require operations

on the dense matrix [xij ], but only do operations for requested OD entries. The procedure

G Backward of algorithm SLU requires operations on the sparse augmented graph G′ only,

but it requires the computation of shortest distances between higher-indexed node pairs

before the computations on the requested OD entries. That is, to compute x∗
st, algorithm

SLU must first compute x∗
kt for k = n, . . . , (s + 1), but algorithm DLU2 can directly

compute x∗
st. Another disadvantage of algorithm SLU is, when shortest paths have to be

traced, it becomes ”decomposed” like Carré’s algorithm, which has to compute the whole

shortest path tree like other SSSP algorithms. Algorithm DLU2, on the other hand, can

trace any intermediate nodes very easily.
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Figure 8: Illustration of procedure G LU on a small example
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5.2.6 A small example

We cite a small example which computes x∗
23 for a small network. Applying algorithm SLU ,

procedure G LU0 creates the augmented graph G′ which can be decomposed into G′
L and

G′
U (see Figure 8). Procedure G Forward(3) computes the shortest path length from each

node s > 3 to node 3 in G′
L. Thus we obtain temporary distance label dn(2) = M , dn(4) = 6,

and dn(5) = 6. Note that d∗n(5) = dn(5) = 6 by Corollary 5.2(b.ii). Based on the current

temporary distance labels, procedure G Backward(2, 3) computes the shortest path length

from each node s ≥ 2 to node 3 in G′
U . In particular, d∗n(4) = min{dn(4), c(a45)+ d∗n(5)} =

min{6, 7+6} = 6, and d∗n(2) = min{dn(2), c(a23), c(a24)+d∗n(4), c(a25)+d∗n(5)} = min{M ,

4, 8 + 6, M + 6} = 4, where c(aij) is the length of arc (i, j) in G′. Figure 9 illustrates the

operations of procedures G Forward(3) and G Backward(2, 3).

1 2 3 4 5

3 2 6

21 1 6

660

1 2 3 4 5

3 18

4 79

4 6 6

G Forward(3)

Node i 3 4 5

succ(i) - 2 3
d(i) 0 6 6

d(j)

i j

d(i) cij

G′L

G′UG Backward(1, 3)

Node i 2 4 5

succ(i) 1 2 3
d(i) 4 6 6

Figure 9: An example of all shortest paths to node 3

5.3 Implementation of algorithm SLU

Here we describe three efficient implementations of algorithm SLU .
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5.3.1 Procedure Preprocess

Computing the optimal ordering that minimizes the fill-ins is NP -complete [272]. Many

ordering techniques need to compute degree production, i(k) · o(k), where i(k) (o(k)) de-

notes the in-degree (out-degree) of node k, for each node. The ordering techniques that

minimize fill-ins have appeared in the literature of solving systems of linear equations and

are applicable here since they are basically dealing with the same problem. In particular,

we have implemented some of the following state-of-the-art ordering techniques:

1. Natural ordering (NAT):

This ordering is the original one as read from the graph G (i.e., without any permu-

tation).

2. Dynamic Markowitz (DM):

This local minimum fill-in technique was first proposed by Markowitz [230], and has

been proved very successful for general-purpose use.

First we compute degree production for each node k. Choose the node k̂ that has the

smallest degree production from node 1 to node n, swap it with node 1, and update

the degree production for the remaining (n − 1) nodes by removing arcs to/from k̂.

Then choose the node with smallest degree production among the remaining (n− 1)

nodes, swap it with node 2, and update the degree production for the remaining (n−2)

nodes. Repeat the same procedure until finally no more node needs to be swapped.

Note that if the graph is acyclic, the ordering obtained by Dynamic Markowitz rule

will always make the nontrivial entries (i.e. finite entries) stored in the lower triangular

part of the distance matrix. It is actually the so-called topological ordering for acyclic

graph.

3. Dynamic Markowitz with tie-breaking (DMT):

When using Markowitz criterion to choose node with the smallest degree production,

we may often experience a tie. That is, two or more nodes may have the same degree

production. Duff et al. [98] notice that a good tie-breaking strategy may substantially
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affect the quality of orderings. However, how to get the best tie-breaking strategy still

remains unclear. Here we implement a simple tie-breaking strategy that probes fill-ins

created by the two node candidates that are tied, and chooses the one with fewer fill-

ins. In particular, suppose both node r and s have the same degree production. Our

strategy is to first choose r, compute its fill-ins, then reset, and choose s to compute

its fill-ins as well. Finally, we choose the one with fewer fill-ins as the pivot.

In our computational results, the quality of the ordering obtained by this tie-breaking

strategy is generally only a little better than the one without the tie-breaking strategy.

4. Static Markowitz (SM):

This is another simple local minimum fill-in technique by Markowitz [230], which is

easy to implement but usually creates more fill-ins than its dynamic variants.

In particular, this ordering is obtained by sorting the degree production for all nodes

in the ascending order, without recalculation after each assignment.

5. METIS NodeND (MNDn):

METIS [195] is a software package for partitioning unstructured graphs and computing

fill-reducing orderings of sparse matrices. It is based on multilevel nested dissection

[196] that identifies a vertex-separator, moves the separator to the end of the matrix,

and then recursively applies a similar process for each one of the other two parts.

METIS NodeND is a stand-alone function in this package which uses a multilevel

paradigm to directly find a vertex separator.

6. METIS EdgeND (MNDe):

METIS EdgeND is another stand-alone function of METIS. It first computes an edge

separator using a multilevel algorithm to find a vertex separator. The orderings

produced by METIS EdgeND generally incur more fill-ins than those produced by

METIS NodeND.

7. Multiple Minimum Degree on CT C (MMDm):
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To solve a sparse system of linear equations CX = b, Liu [223] proposes a method

called multiple minimum degree which computes a symmetric ordering that reduces

fill-ins in the Cholesky factorization of CT C. SuperLU, a software package of Demmel

et al. [91], implements this method. We use SuperLU for our tests.

8. Multiple Minimum Degree on CT + C (MMTa):

This method, also proposed by Liu [223], computes a symmetric ordering that reduces

fill-ins in the Cholesky factorization of CT +C. SuperLU also implements this method.

9. Approximate Minimum Degree Ordering (AMD):

The multiple minimum degree method computes a symmetric ordering on either CT C

or CT +C which may be much denser than C, and time-consuming as well. Davis et

al. [89] propose this approximate minimum degree ordering method which computes

a better ordering in shorter time. We also imported this function from SuperLU for

our tests.

In our tests, usually the dynamic Markowitz rule with tie-breaking produces the fewest

fill-ins. Dynamic Markowitz rule without tie-breaking strategy usually performs as well as

the one with tie-breaking. The advanced ordering techniques of METIS and SuperLU may

get a good ordering very quickly, but the quality of the ordering they compute is not as

good as the dynamic Markowitz rules. Since the time to compute a good ordering is not a

major concern of our research, the dynamic Markowitz rules fit our needs better since they

produce better orderings in reasonable time.

5.3.2 Procedure G LU0

G LU0 is the procedure to construct the augmented graph G′ using arc adjacency lists di(k)

and uo(k) for k = 1 . . . n − 1 in the new ordering. In particular, when we scan node k, we

scan each arc (i, k) in di(k) and each arc (k, j) in uo(k), then check whether the length of

arc (i, j) need to be modified or not. To do so, we need fast access to the index of each arc

(i, j) in G′.
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If we use the forward/backward star [3] implementation, it may take O(n) time to search

di(i) and ui(i) for a specific arc (i, j). Another alternative is to store an extra n× n index

matrix, [aij ], whose (i, j) entry stores the index of arc (i, j). This implementation only takes

O(1) time to retrieve the index given i and j, but requires extra storage.

Since modern computers have lots of storage and G LU0 does access arcs very frequently

(up to n(n−1)(n−2)
3 for a complete graph), we choose the latter implementation for our tests.

In particular, we store an n × n matrix [aij ] to record all the arc index of the augmented

graph.

This implementation of G LU0 takes O(
n−2∑
k=1

(|di(k)| · |uo(k)|)) time.

5.3.3 Procedures G Forward(t̂i) and G Backward(st̂i
, t̂i)

In terms of storage, G Forward(t̂i) only requires di(k), and G Backward(st̂i
, t̂i) requires

ui(k). We also use an indicator function label(k) for each node k, where label(k) = 1 means

node k is labeled and 0 otherwise. Let NF
t̂i

denote the set of nodes that have ever entered

LIST in procedure G Forward(t̂i), and NB
st̂i

,t̂i
be the set of nodes that have ever entered

LIST in procedure G Backward(st̂i
, t̂i). Note that if st̂i

≤ t̂i then NF
t̂i
⊆ NB

st̂i
,t̂i
; otherwise

NF
t̂i
⊃ NB

st̂i
,t̂i
.

When we scan a node k in G Forward(t̂i) (or G Backward(st̂i
, t̂i)), we are in fact doing

triple comparison s → k → t̂i for arcs (s, k) in di(k) (or ui(k)). When we scan an arc (s, k),

we mark its tail node s as labeled. The processes in these two procedures are very similar.

That is, select a lowest (or highest) node k from LIST , scan and label the tails of arcs in

di(k) (or ui(k)), and then select the next lowest (or highest) node to scan.

Both of these two procedures contain a sorting process which selects the lowest (or

highest) node from LIST to scan. To efficiently select these lowest (or highest) nodes from

LIST , we propose three different implementations. The first implementation uses label(k)

to check whether a node is labeled or not, which is similar to Dial’s implementation [93] of

Dijkstra’s algorithm. The second one is to maintain a heap that stores nodes in ascending

order in G Forward(t̂i), and stores nodes in descending order in G Backward(st̂i
, t̂i). The
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last implementation is to maintain two heaps, a min-heap for G Forward(t̂i) and a max-

heap for G Backward(st̂i
, t̂i).

In our tests, both the first and the third implementations run faster than the second one.

However, comparisons between the first implementation and the third one depend on the

platforms and the compilers. In particular, the first implementation generally runs faster

on a Sun Solaris workstation, while the result is reversed on a Intel PC running Linux.

5.3.3.1 Bucket implementation of G Forward(t̂i) and G Backward(st̂i
, t̂i):

Although there is no data structure named ’bucket’ in this implementation, we use this

name since it resembles Dial’s bucket implementation on Dijkstra’s algorithm. In this

implementation, we use an indicator function, label(k) (i.e., a bucket), for each node k to

indicate whether it is labeled or not (or in a sense, to indicate whether it is ”in the bucket”

or not). In the beginning, no nodes are labeled. That is, label(k) = 0 for each node k.

In G Forward(t̂i), starting from the destination node k = t̂i, we scan arcs in di(k),

update the distance labels for their tails, and mark these tails as labeled. That is, dn(s) =

min{dn(s), c(ask) + dn(k)}, and label(tail(ask)) = 1 for each arc (s, k) in di(k). After node

k is scanned, we then search for the next lowest labeled node to scan. We repeat these

processes until finally all the labeled nodes higher than t̂i are scanned. At this moment,

any node whose distance label dn(s) is finite must have been labeled. In particular, any

labeled node has a finite distance label dn(s) to represent its shortest path length in G′
L to

node t̂i. G Forward(t̂i) starts from bucket k = t̂i, scans all its down-inward arcs (s, k) and

puts each tail node s into its bucket if bucket s is still empty. It then searches for the next

nonempty bucket (i.e., next labeled node) in ascending order. The operations are repeated

until the last nonempty bucket s̃t̂i
(i.e., the highest labeled node) has been scanned.

In G Backward(st̂i
, t̂i), starting from the highest labeled node k = s̃t̂i

, we scan arcs in

ui(k), update the distance labels for their tails, and mark these tails as labeled if they are

higher than st̂i
. That is, dn(s) = min{dn(s), c(ask) + dn(k)}, and label(tail(ask)) = 1 for

each arc (s, k) in ui(k) satisfying s > st̂i
. Then we search for the next highest labeled node

to scan. We repeat these operations until finally node st̂i
is scanned. At this moment, we
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have finished the triple comparisons on all the arcs that are in some paths to t̂i in G′
U ; thus

G Backward(st̂i
, t̂i) is terminated. G Backward(st̂i

, t̂i) starts from bucket k = s̃t̂i
(i.e.,

the highest labeled node), scans all its up-inward arcs (s, k) and puts each tail node s into

its bucket if bucket s is still empty. It then searches for the next nonempty bucket (i.e.,

next labeled node) in descending order. The operations are repeated until all the nonempty

buckets with index higher than st̂i
(i.e., all the labeled nodes s > st̂i

) have been scanned.

This bucket implementation has to check (1) each node k = t̂i, . . . , s̃t̂i
in G Forward(t̂i),

and (2) each node k = (st̂i
+ 1), . . . , s̃t̂i

in G Backward(st̂i
, t̂i), at least once. Therefore,

the complexity of this implementation is O(

s̃t̂i∑

k=t̂i

(1) +
∑

k∈NF
t̂i

|di(k)|) for G Forward(t̂i) and

O(

s̃t̂i∑
k=st̂i

+1

(1) +
∑

k∈NB
s
t̂i

,t̂i

|ui(k)|) for G Backward(st̂i
, t̂i). This is an easy and very efficient

implementation in our computational experiments. However, time spent in detecting un-

labeled nodes (i.e., empty buckets) may be further saved. In particular, if we maintain

all the labeled nodes in some sorted data structure such as a binary heap, then each it-

eration of G Forward(t̂i) only removes the top node of a min-heap, and each iteration of

G Backward(st̂i
, t̂i) only removes the top node of a max-heap. Such heaps avoid checking

unlabeled nodes, but require overhead in heap sort.

Next, we propose the following two implementations based on heaps.

5.3.3.2 Single heap implementation of G Forward(t̂i) and G Backward(st̂i
, t̂i):

In this implementation we use a single binary heap data structure to extract the lowest

(or highest) labeled node. A node is inserted into the heap only when it is labeled. By

maintaining the heap, first sorted as a min-heap in G Forward(t̂i) and then as a max-heap

in G Backward(st̂i
, t̂i), we skip the scanning operations required by the bucket implemen-

tation for unlabeled nodes.

In G Forward(t̂i), we maintain the heap as a min-heap (so that every node is lower than

its children). Starting from the destination node k = t̂i, we scan arcs in di(k), update the

distance labels of their tails, mark these tails as labeled, and put them into the min-heap.

Then we extract the top node from the min-heap and repeat these procedures until the
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min-heap becomes empty, when we terminate G Forward(t̂i).

To start G Backward(st̂i
, t̂i), first we have to put all the labeled nodes higher than st̂i

into the max-heap. Then we extract the top node k (which corresponds to the highest

labeled node), mark it as unlabeled, scan arcs in ui(k), update the distance labels of their

tails, mark these tails as labeled, and put them into the max-heap if they are higher than

st̂i
. We repeat the same procedures until finally the max-heap becomes empty. At this

moment, we have finished the triple comparisons on all the arcs that are in some paths to

t̂i in G′
U ; thus G Backward(st̂i

, t̂i) is terminated.

This implementation only checks labeled nodes, but its overhead in heap sorting may

be time-consuming. In G Forward(t̂i), each node in NF
t̂i

is extracted and inserted into

the min-heap exactly once. Both extracting and inserting a node on a min-heap may

take O(log
∣∣∣NF

t̂i

∣∣∣). Thus, an O(
∣∣∣NF

t̂i

∣∣∣ log
∣∣∣NF

t̂i

∣∣∣) time bound is obtained for all the min-

heap operations in G Forward(t̂i). This time bound is for the worst case. The average

time should be much better since on average the depth of the heap is smaller than
∣∣∣NF

t̂i

∣∣∣.

Including the inevitable
∑

k∈NF
t̂i

|di(k)| triple comparisons, the complexity of this single heap

implementation on G Forward(t̂i) is O(
∣∣∣NF

t̂i

∣∣∣ log
∣∣∣NF

t̂i

∣∣∣ +
∑

k∈NF
t̂i

|di(k)|)

In the beginning of G Backward(st̂i
, t̂i), we need a loop to identify labeled nodes either

from node t̂i to the highest labeled node s̃t̂i
(if st̂i

< t̂i), or from node st̂i
to s̃t̂i

(if st̂i
> t̂i),

which will take O(s̃t̂i
− max{st̂i

, t̂i}) time. Inserting all the labeled nodes that are higher

than st̂i
into the max-heap will take O(

∣∣∣∣NB
st̂i

,t̂i

∣∣∣∣ log
∣∣∣∣NB

st̂i
,t̂i

∣∣∣∣) time. Each node in NB
st̂i

,t̂i
is

extracted exactly once, for a total of O(

∣∣∣∣NB
st̂i

,t̂i

∣∣∣∣ log
∣∣∣∣NB

st̂i
,t̂i

∣∣∣∣) time. Including the inevitable

∑
k∈NB

s
t̂i

,t̂i

|ui(k)| triple comparisons, the complexity of this single heap implementation on

G Backward(st̂i
, t̂i) is O(s̃t̂i

−max{st̂i
, t̂i} +

∣∣∣∣NB
st̂i

,t̂i

∣∣∣∣ log
∣∣∣∣NB

st̂i
,t̂i

∣∣∣∣ +
∑

k∈NB
s
t̂i

,t̂i

|ui(k)|). Again

this is for the worst case. On average, extracting a node from or inserting a node into the

max-heap may take time shorter than O(log

∣∣∣∣NB
st̂i

,t̂i

∣∣∣∣) since the depth of the max-heap is

usually smaller than

∣∣∣∣NB
st̂i

,t̂i

∣∣∣∣.

This implementation only maintains a single heap which becomes empty in the beginning
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of G Backward(st̂i
, t̂i). To insert those nodes that are labeled by G Forward(t̂i) into the

max-heap in the beginning of G Backward(st̂i
, t̂i), an overhead that checks s̃t̂i

−max{st̂i
, t̂i}

nodes has to be made. If only a few of these s̃t̂i
−max{st̂i

, t̂i} nodes are labeled, this overhead

will become inefficient. Next, we propose another way to avoid this overhead, at the cost

of maintaining an additional heap data structure.

5.3.3.3 Two-heap implementation of G Forward(t̂i) and G Backward(st̂i
, t̂i):

Instead of using a single heap, this implementation maintains two heaps, one min-heap for

G Forward(t̂i), and one max-heap for G Backward(st̂i
, t̂i).

In particular, after we extract the lowest labeled node k from the min-heap in G Forward

(t̂i), we insert that node into the max-heap right away, if k ≥ st̂i
. Therefore, after

G Forward(t̂i), the max-heap is ready to start G Backward(st̂i
, t̂i). G Forward(t̂i) spends

O( min{
∣∣∣NF

t̂i

∣∣∣ log
∣∣∣NF

t̂i

∣∣∣,
∣∣∣∣NB

st̂i
,t̂i

∣∣∣∣ log
∣∣∣∣NB

st̂i
,t̂i

∣∣∣∣ }) time inserting nodes into the max-heap, and

O(
∣∣∣NF

t̂i

∣∣∣ log
∣∣∣NF

t̂i

∣∣∣) time inserting and extracting nodes on the min-heap. Including the

O(
∑

k∈NF
t̂i

|di(k)|) triple comparisons, the overall complexity of G Forward(t̂i) is O(
∣∣∣NF

t̂i

∣∣∣

log
∣∣∣NF

t̂i

∣∣∣ +
∑

k∈NF
t̂i

|di(k)| ). Similarly, G Backward(st̂i
, t̂i) will take O(

∣∣∣∣NB
st̂i

,t̂i

∣∣∣∣ log

∣∣∣∣NB
st̂i

,t̂i

∣∣∣∣

+
∑

k∈NB
s
t̂i

,t̂i

|ui(k)| ) time.

Therefore this two-heap implementation has a better time bound but needs more storage

than the single heap implementation.

5.3.4 Summary on different SLU implementations

We give three implementations of algorithm SLU : a bucket implementation (SLU1), a

single heap implementation (SLU2), and a two-heap implementation (SLU3). All of these

three implementation have the same procedure G LU0. They differ by techniques of imple-

menting procedures G Forward and G Backward.

Table 7 compares the running time for these three implementations.

It is difficult to tell which implementation is theoretically better than the others. How-

ever, the bucket implementation seems to be faster in practice, according to our experiments

in Section 5.6.2.
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Table 7: Running time of different SLU implementations

G LU0 G Forward(t̂i) G Backward(st̂i
,t̂i)

bucket
n−2∑
k=1

(|di(k)| · |uo(k)|)

s̃
t̂i∑

k=t̂i

(1) +
∑

k∈NF
t̂i

|di(k)|

s̃
t̂i∑

k=s
t̂i

+1

(1) +
∑

k∈NB
s

t̂i
,t̂i

|ui(k)|

single
heap

n−2∑
k=1

(|di(k)| · |uo(k)|)
∣∣∣NF

t̂i

∣∣∣ log
∣∣∣NF

t̂i

∣∣∣ +
∑

k∈NF
t̂i

|di(k)|

s̃t̂i
− max{st̂i

, t̂i}

+

∣∣∣∣NB
s

t̂i
,t̂i

∣∣∣∣ log
∣∣∣∣NB

s
t̂i

,t̂i

∣∣∣∣ +
∑

k∈NB
s

t̂i
,t̂i

|ui(k)|

two-
heap

n−2∑
k=1

(|di(k)| · |uo(k)|)
∣∣∣NF

t̂i

∣∣∣ log
∣∣∣NF

t̂i

∣∣∣ +
∑

k∈NF
t̂i

|di(k)|

∣∣∣∣NB
s

t̂i
,t̂i

∣∣∣∣ log
∣∣∣∣NB

s
t̂i

,t̂i

∣∣∣∣ +
∑

k∈NB
s

t̂i
,t̂i

|ui(k)|

5.4 Implementation of algorithm DLU2

Algorithm DLU2 is one of our new MPSP algorithms proposed in Section 4.3. Here we de-

scribe two efficient implementations of algorithm DLU2. Algorithm DLU2 (see Section 4.3)

contains three major procedures: Preprocess, G LU (see Section 4.2.1) and Get D(si, ti)

(see Section 4.3.1). The preprocessing (Preprocess) and LU decomposition (G LU) proce-

dures are similar to those of algorithm SLU .

All the operations of SLU are based on the arc adjacency lists of G′ (i.e., di(k), uo(k),

and ui(k) for each node k). Each iteration of SLU updates only two n × 1 arrays dn(k)

and succn(k) to report the shortest path. On the other hand, although algorithm DLU2

performs most of its operations based on the arc adjacency lists of G′ (i.e., di(k) and uo(k)

for each node k), it also updates two n× n arrays [xij ] and [succij ].

In particular, the procedure G LU and subprocedures Get D L(ti) and Get D U(si)

update [xij ] and [succij ] by operations on arcs di(k) and uo(k) for each node k in G′. We

implement Min add(si, ti) algebraically since the updated [xij ] and [succij ] become denser

and make ”graphical” implementation of Min add(si, ti) less efficient.

To speed up the acyclic operations of subprocedures Get D L(ti) and Get D U(si), we

propose two implementations: bucket implementation and heap implementation.

5.4.1 Bucket implementation of Get D L(ti) and Get D U(si)

This is similar to the bucket implementation of G Forward(ti) in Section 5.3.3.1.

In Get D L(ti), starting from node k = ti, we scan arcs in di(k), update the distance
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Algorithm 8 DLU2(Q := {(si, ti) : i = 1, . . . ,q})

begin
Preprocess;
Initialize:

optij := 0 ∀ i = 1, . . . , n, j = 1, . . . , n
subrowi := 0 ; subcoli := 0 ∀ i = 1, . . . , n

G LU ;
set optn,n−1 := 1, optn−1,n := 1
for i = 1 to q do

Get D(si, ti);
if shortest paths need to be traced then

if xsiti 6=∞ then

Get P (si, ti);
else there exists no path from si to ti

end

Procedure Preprocess
begin

Decide a node ordering perm(k) for each node k;
Symbolic execution of procedure G LU to determine the arc adjacency list

di(k), and uo(k), for each node k of the augmented graph G′ ;
Initialize: ∀(s, t) ∈ G′, xst := cst; succst := t
Initialize: ∀(s, t) /∈ G′, xst := M ; succst := 0

optij := 0 ∀ i = 1, . . . , n, j = 1, . . . , n
subrowi := 0 ; subcoli := 0 ∀ i = 1, . . . , n

end

Procedure G LU
begin

for k = 1 to n− 2 do

for each arc (s, k) ∈ di(k) do

for each arc (k, t) ∈ uo(k) do

if xst > xsk + xkt

if s = t and xsk + xkt < 0 then

Found a negative cycle; STOP

if xst =∞ then

if s > t then

add a new arc (s, t) to di(t)
if s < t then

add a new arc (s, t) to uo(s)
xst := xsk + xkt ; succst := succsk

end
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Procedure Get D(si, ti)
begin

if optsiti = 0 then

if subcolti = 0 then Get D L(ti); subcolti := 1
if subrowsi

= 0 then Get D U(si); subrowsi
:= 1

Min add(si, ti);
end

Subprocedure Get D L(t)
begin

put node t in LIST
while LIST is not empty do

remove the lowest node k in LIST
for each arc (s, k) ∈ di(k) do

if s /∈ LIST , put s into LIST
if xst > xsk + xkt then

xst := xsk + xkt ; succst := succsk

end

Subprocedure Get D U(s)
begin

put node s in LIST
while LIST is not empty do

remove the lowest node k in LIST
for each arc (k, t) ∈ uo(k) do

if t /∈ LIST , put t into LIST
if xst > xsk + xkt then

xst := xsk + xkt ; succst := succsk

end

Subprocedure Min add(si, ti)
begin

ri := max{si, ti}
for k = n down to ri + 1 do

if xsiti > xsik + xkti then

xsiti := xsik + xkti ; succsiti := succsiki

optsiti := 1
end
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Procedure Get P(si, ti)
begin

let k := succsiti

while k 6= ti do

Get D(k, ti);
let k := succkti

end

labels for their tails, and mark these tails as labeled. That is, xsti = min{xsti , xsk + xkti},

and label(s) = 1 for each arc (s, k) in di(k). After node k is scanned, we then search for the

next lowest labeled node to scan and repeat these procedures until finally all the labeled

nodes higher than ti are scanned. Then we reset label(s) = 0 for each node s.

In Get D U(si), starting from node k = si, we scan arcs in uo(k), update the distance

labels for their heads, and mark these heads as labeled. That is, xsit = min{xsit, xsik+xkt},

and label(t) = 1 for each arc (k, t) in uo(k). After node k is scanned, we then search for the

next lowest labeled node to scan and repeat these procedures until finally all the labeled

nodes higher than si are scanned. Then we reset label(t) = 0 for each node t.

Let s̃ti and t̃si
denote the highest labeled node obtained by Get D L(ti) and Get D U(si),

respectively. Let NL
ti
and NU

si
be the set of labeled nodes by Get D L(ti) and Get D U(si),

respectively. The complexity of the bucket implementation is O(
s̃ti∑

k=ti

(1) +
∑

k∈NL
ti

|di(k)|) for

Get D L(ti) and O(
t̃si∑

k=si

(1)+
∑

k∈NU
si

|uo(k)|) for Get D U(si). Note that we use the indicator

arrays subcolti and subrowsi
for each distinct si and ti to avoid redundant operations.

5.4.2 Heap implementation of Get D L(ti) and Get D U(si)

This is similar to the bucket implementation of G Forward(ti) in Section 5.3.3.2.

In Get D L(ti), we maintain a min-heap where any of its tree node is lower than its

children. Starting from the destination node k = ti, we scan arcs in di(k), update the

distance labels for their tails, mark these tails as labeled, and put them into the min-heap.

Then we extract the top node from the min-heap and repeat these procedures until the

min-heap becomes empty.

In Get D U(si), we use the same min-heap that has become empty after Get D L(ti).
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Starting from the origin node k = si, we scan arcs in uo(k), update the distance labels for

their heads, mark these heads as labeled, and put them into the min-heap. Then we extract

the top node from the min-heap and repeat these procedures until the min-heap becomes

empty.

Let NL
ti

and NU
si

be the set of nodes labeled by Get D L(ti) and Get D U(si), respec-

tively. The complexity of the bucket implementation is O(
∣∣NL

ti

∣∣ log
∣∣NL

ti

∣∣ +
∑

k∈NL
ti

|di(k)|) for

Get D L(ti) where
∑

k∈NL
ti

|di(k)| is the total number of scans and
∣∣NL

ti

∣∣ log
∣∣NL

ti

∣∣ comes from

inserting a node into and extracting a node from a binary heap. Similarly, Get D U(si) has

an O(
∣∣NU

si

∣∣ log
∣∣NU

si

∣∣ +
∑

k∈NU
si

|uo(k)|) time bound.

5.5 Settings of computational experiments

In this Section, we present the test conditions for our computational experiments on solving

MPSP problems.

5.5.1 Artificial networks and real flight network

We use four network generators which produce artificial networks: SPGRID, SPRAND and

SPACYC are designed by Cherkassky et al. [74]; NETGEN is by Klingman et al. [207, 185].

We also test our algorithms on a real Asia-Pacific flight network.

5.5.1.1 Asia-Pacific flight network (AP-NET):

As shown in Chapter 1, the AP-NET contains 112 nodes (48 center nodes in Table 2, and

64 rim nodes in Table 3) and 1038 arcs, where each node represents a chosen city and each

arc represents a chosen flight. Among the 1038 arcs, 480 arcs connect center cities to center

cities; 277 arcs connect rim cities to center cities; and 281 arcs connect center cities to rim

cities. We use the great circle distance between the departure and arrival cities of each

flight leg as the arc length.

5.5.1.2 SPGRID:

SPGRID generates a grid network defined by XY +1 nodes. In particular, consider a plane

with XY integer coordinates [x, y], 1 ≤ x ≤ X, 1 ≤ y ≤ Y . An arc with tail [x, y] is called
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”forward” if its head is [x+1, y], ”upward” if its head is [x, (y+1)modY ], and ”downward”

if its head is [x, (y − 1)modY ] for 1 ≤ x ≤ X, 1 ≤ y ≤ Y . A ”super source” node is

connected to nodes [1, y] for 1 ≤ y ≤ Y . Let each ”layer” be the subgraph induced by the

nodes of the same x. For each layer, SPGRID can specify each layer to be either doubly

connected (i.e. each layer is a doubly connected cycle) or singly connected. Among all of

the adjustable parameters, we choose to adjust X, Y , layer connectivity, and the range of

arc lengths for arcs inside each layer ([cl, cu]) and arcs between different layers ([ĉl, ĉu]). The

arc lengths will be uniformly chosen in the range.

Following the settings used in [74], we generate the following four SPGRID families:

• SPGRID-SQ: (SQ stands for square grid)

X = Y ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}; each layer is double cycle;

[cl, cu] = [103, 104]; [ĉl, ĉu] = [103, 104]

• SPGRID-WL: (WL stands for wide or long grid)

Wide: X = 16, Y ∈ {64, 128, 256, 512}; Long: Y = 16, X ∈ {64, 128, 256, 512};

each layer is double cycle; [cl, cu] = [103, 104]; [ĉl, ĉu] = [103, 104]

• SPGRID-PH: (PH stands for positive arc lengths and hard problems)

Y = 32, X ∈ {16, 32, 64, 128, 256}; each layer is single cycle;

[cl, cu] = [1, 1]; [ĉl, ĉu] = [103, 104]; randomly assign 64 additional arcs within each

layer

• SPGRID-NH: (NH stands for negative arc lengths and hard problems)

Y = 32, X ∈ {16, 32, 64, 128}; each layer is single cycle;

[cl, cu] = [1, 1]; [ĉl, ĉu] = [−104,−103]; randomly assign 64 additional arcs within each

layer

5.5.1.3 SPRAND:

SPRAND first constructs a hamiltonian cycle, and then adds arcs with distinct random

end points. Except for the SPRAND-LENS and SPRAND-LEND family, we set the length
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of the arcs in the hamiltonian cycle to be 1 and others to be uniformly chosen from the

interval [0, 104].

By adjusting the parameters, we generate the following six SPRAND families:

• SPRAND-S: (S stands for sparse graphs)

|N | ∈ {128, 256, 512, 1024, 2048}; average degree ∈ {4, 16}

• SPRAND-D: (D stands for dense graphs)

|N | ∈ {128, 256, 512, 1024, 2048}; |A| = |N |(|N |−1)
k

where k ∈ {4, 2}

• SPRAND-LENS: (LEN stands for different arc lengths; S stands for sparse graphs)

|N | ∈ {256, 1024}; average degree = 4; range of arc lengths [L, U ] ∈ {[1, 1], [0, 10],

[0, 102], [0, 104], [0, 106]}

• SPRAND-LEND: (LEN stands for different arc lengths; D stands for dense graphs)

|N | ∈ {256, 1024}; |A| = |N |(|N |−1)
4 ; range of arc lengths [L, U ] ∈ {[1, 1], [0, 10], [0, 102],

[0, 104], [0, 106]}

• SPRAND-PS: (P stands for changeable node potential; S stands for sparse graphs)

|N | ∈ {256, 1024}; average degree = 4; lower bound of node potential = 0; upper

bound of node potential ∈ {0, 104, 105, 106}

• SPRAND-PD: (P stands for changeable node potential; D stands for dense graphs)

|N | ∈ {256, 1024}; |A| = |N |(|N |−1)
4 ; lower bound of node potential = 0; upper bound

of node potential ∈ {0, 104, 105, 106}

5.5.1.4 NETGEN:

NETGEN is a network generator developed by Klingman et al. [207]. We use its C version

to create our testing categories. Among many adjustable parameters, we choose to adjust

|N |, |A| and [L, U ] where L and U represent the lower and upper bounds on arc lengths.

By adjusting the parameters, we generate the following four NETGEN families:

• NETGEN-S: (S stands for sparse graphs)

|N | ∈ {128, 256, 512, 1024, 2048}; average degree ∈ {4, 16}; [L, U ] = [0, 103]
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• NETGEN-D: (D stands for dense graphs)

|N | ∈ {128, 256, 512, 1024, 2048}; |A| = |N |(|N |−1)
k

where k ∈ {4, 2}; [L, U ] = [0, 103]

• NETGEN-LENS: (LEN stands for different arc lengths; S stands for sparse graphs)

|N | ∈ {256, 1024}; average degree = 4; L = 0; U ∈ {0, 102, 104, 106}

• NETGEN-LEND: (LEN stands for different arc lengths; D stands for dense graphs)

|N | ∈ {256, 1024}; |A| = |N |(|N |−1)
k

where k ∈ {4, 2}; L = 0; U ∈ {0, 102, 104, 106}

5.5.1.5 SPACYC:

SPACYC generates acyclic networks. It first constructs a central path starting from node

1 that visits every other node exactly once, and then randomly connects nodes. All arcs

are oriented from nodes of smaller index to nodes of larger index. Among many adjustable

parameters, we choose to adjust |N |, |A| and [L, U ] where L and U represent the lower and

upper bounds on arc lengths.

By adjusting the parameters, we generate the following five SPACYC families:

• SPACYC-PS: (P stands for positive arc length; S stands for sparse graphs)

|N | ∈ {128, 256, 512, 1024, 2048}; average degree ∈ {4, 16}; arcs in the central path

have length = 1, all other arcs have lengths uniformly distributed in [L, U ] = [0, 104]

• SPACYC-NS: (N stands for negative arc length; S stands for sparse graphs)

|N | ∈ {128, 256, 512, 1024, 2048}; average degree ∈ {4, 16}; arcs in the central path

have length = −1, all other arcs have lengths uniformly distributed in [L, U ] =

[−104, 0]

• SPACYC-PD: (P stands for positive arc length; D stands for dense graphs)

|N | ∈ {128, 256, 512, 1024, 2048}; |A| = |N |(|N |−1)
k

where k ∈ {4, 2}; arcs in the central

path have length = 1, all other arcs have lengths uniformly distributed in [L, U ] =

[0, 104]

• SPACYC-NS: (N stands for negative arc length; D stands for dense graphs)

|N | ∈ {128, 256, 512, 1024}; |A| = |N |(|N |−1)
k

where k ∈ {4, 2}; arcs in the central
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path have length = −1, all other arcs have lengths uniformly distributed in [L, U ] =

[−104, 0]

• SPACYC-P2N: (P2N stands for changing the arc lengths from positive to negative)

|N | ∈ {128, 1024}; average degree = 16; arcs in the central path have length = 1, all

other arcs have lengths uniformly distributed in [L, U ] ∈ 103×{[0, 10], [−1, 9], [−2, 8],

[−3, 7], [−4, 6], [−5, 5], [−6, 4], [−10, 0]}

5.5.2 Shortest path codes

Using different node selection techniques, we have several implementations of our MPSP

algorithms SLU and DLU2. We also implement a ”combinatorial” (or graphical) Floyd-

Warshall (FW ) algorithm which is much faster than its naive algebraic implementation. All

versions of SLU , DLU , and FW share the same preprocessing procedure which determines

a sparse node ordering.

For other SSSP algorithms, we modify the label correcting and label setting codes writ-

ten by Cherkassky et al. [74] for solving the MPSP problems.

5.5.2.1 SLU codes:

All versions SLU1, SLU2, and SLU3 have the same LU factorization subroutines. They

differ by techniques of implementing the forward elimination and backward substitution

procedures. In particular, SLU1 uses a technique similar to Dial’s bucket implementation

as described in Section 5.3.3.1; SLU2 uses single heap as introduced in Section 5.3.3.2;

SLU3 uses two heaps as introduced in Section 5.3.3.3.

5.5.2.2 DLU2 codes:

Both DLU21 and DLU22 have the same LU factorization and min-addition subroutines.

They differ by techniques of implementing the acyclic operations in Acyclic L and Acyclic U

procedures. In particular, DLU21 uses a technique similar to Dial’s bucket implementation

as described in Section 5.4.1; DLU22 uses single heap as introduced in Section 5.4.2.
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5.5.2.3 Floyd-Warshall code:

The graphical Floyd-Warshall algorithm FWG takes advantage of the sparse node ordering

to avoid more trivial triple comparisons than its naive algebraic implementation FWA.

In particular, in the kth iteration of FWG, the nontrivial triple comparison i → k → j

computes min{xij , xik+xkj} for xik 6=∞, and xkj 6=∞. These nontrivial triple comparisons

can be efficiently implemented if we maintain a n × 1 outgoing arc list (k, l) and a n × 1

incoming arc list (l, k) for l = 1, . . . , n for each node k. In the procedure, whenever xij =∞

and xik+xkj <∞, we add a new arc (i, j) to the outgoing arc list of node i and incoming arc

list of node j. Thus this implementation avoids trivial triple comparisons where xik = ∞

or xkj =∞ and is much faster.

5.5.2.4 Label correcting SSSP codes: GOR1, BFP, THRESH, PAPE, TWOQ

These five label correcting SSSP codes are chosen from Cherkassky et al. [74] due to their

better performance than other implementations of label correcting algorithms. They differ

with each other in the order of node selection for scanning.

In particular, GOR1, proposed by Goldberg and Radzik [140], does a topological order-

ing on the candidate nodes so that the node with more descendants will be scanned earlier.

BFP is a modified Bellman-Ford algorithm [40] which scans a node only if its parent is

not in the queue. THRESH is the threshold algorithm by Glover et al. [134]. PAPE is a

dequeue implementation by Pape [264] and Levit [220] which maintains two candidate lists:

one is a stack and the other is a queue. It always selects a node to scan from the stack,

if it is not empty; otherwise, it scans a node from the queue. When it scans a node, that

is, checks the heads of the outgoing arcs from that node, if the head has not been scanned

yet, it will be put into the queue; otherwise, it will be put into the stack. PAPE has been

shown to have an exponential time bound [203, 290], but is practically efficient in most

real-world networks. TWOQ by Pallottino [260] is a similar algorithm which maintains two

queues instead of one stack and one queue as PAPE.

When solving SSSP problems, GOR1 and BFP have complexity O(nm), THRESH has

complexity O(nm) for problems with nonnegative arc lengths, and TWOQ has complexity
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O(n2m).

5.5.2.5 Label setting SSSP codes: DIKH, DIKBD, DIKR, DIKBA

These four label setting SSSP codes are chosen from Cherkassky et al. [74] due to their

better performance than other implementations of label setting algorithms. All of them are

variants of Dijkstra’s algorithm. They differ with each other in the way of selecting the

node with smallest distance label.

In particular, DIKH is the most common binary heap implementation. DIKBD,

DIKR, and DIKBA can be viewed as variants of Dial’s bucket implementation [93].

DIKBD is a double bucket implementation, DIKBA is an approximate bucket imple-

mentation, and DIKR is the radix-heap implementation. See Cherkassky et al. [74] for

more detailed introduction on these implementations and their complexities.

5.5.2.6 Acyclic code: (ACC)

ACC is also written by Cherkassky et al. [74] to test the performance of different algorithms

on acyclic graphs. It is based on topological ordering which has complexity O(m) for solving

SSSP problems.

5.5.3 Requested OD pairs

The indices of the requested OD pairs may affect the efficiency of our algorithms DLU2

and SLU , but will not affect the SSSP algorithms. In particular, algorithm DLU2 and

SLU compute the shortest path lengths for node pairs with larger index earlier or faster

than node pairs with smaller index since both DLU2 and SLU use the LU factorization,

which does more triple comparisons for higher node pairs. The SSSP algorithms, on the

other hand, find the shortest path tree at each iteration for different roots, and thus does

not depend on the indices of the requested OD pairs.

To do a fair computational comparison, we first randomly choose several destination

nodes (columns in the OD matrix). For each destination node, we randomly choose its

associated origin node (row). We produce four sets: OD25, OD50, OD75, and OD100 of OD

pairs for each test family, in which ODk means that the requested OD pairs cover k% ∗ |N |
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Table 8: number of fill-ins created by different pivot rules

Pivoting rule NAT DM DMT SM MNDn MNDe MMDm MMTa AMD

# fill-ins 1084 153 153 170 193 210 430 341 2172

destination nodes (columns). Using these four random OD sets for each test family, we can

observe how our algorithms DLU2 and SLU perform compared with the repeated SSSP

algorithms.

Intuitively, algorithm DLU2 and SLU should be advantageous for the OD100 case. The

100% random requested OD pairs will cover all the columns and make the MPSP problem

an APSP problem for repeated SSSP algorithms. However, algorithm DLU2 and SLU save

some computational work since they terminate when all the |N | requested OD pairs are

computed, instead of all |N |(|N |−1)
2 OD pairs.

5.6 Computational results

This section summarizes our comprehensive computational experiments. First we compare

the different preprocessing rules, and then we compare different implementations of SLU ,

DLU2 and how they perform compared with the Floyd-Warshall algorithm. Finally we

compare SLU and DLU2 with many SSSP algorithms on many different problem families

using different percentages of covered columns in the set of requested OD pairs.

5.6.1 Best sparsity pivoting rule

Using the Asia-Pacific flight network (AP-NET) as an example, Table 8 gives the number of

fill-ins induced by different pivot rules (see Section 5.3.1). None of these 9 pivoting rules is

always superior to the others. However in our experience, usually the dynamic Markowitz

rule (with or without tie breaking) produces fewer fill-ins than others. Thus in all of our

experiments, we compare the number of fill-ins induced by NAT, DM, and DMT, then

choose the smallest of these three rules as our pivoting rule.

139



5.6.2 Best SLU implementations

SLU1, SLU2, and SLU3 all use the same node ordering produced by the preprocessing

procedure. In our tests (see Tables 35,. . . ,91 in the appendix), SLU1 is always faster than

SLU2 and SLU3. SLU2 performs a little better than SLU3, but in general they perform

very similarly. We also have an interesting finding which indicates that the heap-oriented

codes will perform better on Intel machines than Sun machines. In particular, the relative

performance of the heap-oriented codes such as SLU2, and SLU3 will improve on Intel

machines using Linux (Mandrake 8.2) or Windows (cygwin on Win2000). Nevertheless,

SLU1 is still more efficient overall.

5.6.3 Best DLU2 implementations

Both DLU21 and DLU22 use the same node ordering produced by the preprocessing pro-

cedure. In our tests (see Tables 35,. . . ,91 in the appendix), DLU21 is usually faster than

DLU22. As discussed previously, the relative performance of the heap-oriented codes such

as DLU22 will improve on Intel machines. Nevertheless, DLU21 is still more efficient

asymptotically.

5.6.4 SLU and DLU2 vs. Floyd-Warshall algorithm

Algorithms SLU and DLU2 always perform much faster than the Floyd-Warshall algo-

rithm. Here we use the AP-NET as an example. Suppose there are 112 requested OD

pairs whose destination nodes span the whole node set (i.e. 112 nodes). Table 9 shows the

relative running times of the naive algebraic implementation of Floyd-Warshall algorithm

(FWA), the graphical implementation (FWG), and the SLU and DLU2 implementations

on different platforms.1 In this specific example, DLU21 is the fastest code. Although

FWG significantly improves upon FWA, it is still worse than SLU1 and DLU21. We

also observe that when the network becomes larger, the Floyd-Warshall algorithm becomes

more inefficient. The reason may be due to more memory accessing operations since it is

an algebraic algorithm and requires O(n2) storage.

1Sun is a Sun workstation; Mdk is Mandrake Linux on an Intel machine; Win is Win2000 on an Intel
machine.
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Table 9: Floyd-Warshall algorithms vs. SLU and DLU2

FWA FWG SLU1 SLU2 SLU3 DLU21 DLU22

Sun 18.77 8.21 2.10 5.49 5.38 1.00 1.37
Mdk 12.25 5.62 3.87 6.25 5.06 1.00 1.29
Win 13.37 6.17 2.63 5.77 5.63 1.00 1.29

5.6.5 SLU and DLU2 vs. SSSP algorithms

In our computational experiments, we produce four sets: OD25, OD50, OD75, and OD100

of OD pairs for each problem family. For the same problem family, the SSSP algorithms

have consistent performance for different numbers of OD pairs. This is because the SSSP

algorithms solve ALL-1 shortest path trees for each destination; thus increasing the number

of distinct destinations simply increases the number of applications of these algorithms. On

the other hand, our MPSP algorithms SLU and DLU2 will have better relative performance

when number of distinct destinations increases. In particular, for the same problem set, SLU

and DLU2 will perform relatively better on cases of 100% |N | distinct destinations than on

cases of 25% |N | distinct destinations. The computationally burdensome LU factorization

procedure of SLU and DLU2 only needs to be done once, after which the overall effort for

solving APSP problems is less. Thus, for problems requesting OD pairs with more distinct

destinations, the overhead in the LU factorization will not be wasted.

5.6.5.1 Flight networks

Table 10 lists the computational results of 15 algorithms on the AP-NET.

We observe that all versions of SLU and DLU2 perform better for cases with more

distinct destinations. In this specific example, DLU21 is one of the fastest codes, especially

for cases where more than 75% distinct requested destinations. Most label correcting meth-

ods like PAPE, TWOQ, THRESH, and BFP also perform well. SLU1 is not as fast as

DLU2, but is still faster than all the Dijkstra codes. FWG, our modified Floyd-Warshall

algorithm, is the slowest one even when all the SSSP codes are solving an APSP problem

in the case with 100% distinct requested destinations.

It is also interesting that those codes which require more memory access (such as FWG,
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Table 10: Relative performance of different algorithms on AP-NET

FWG SLU SLU SLU DLU DLU GOR BFP THR PA TWO DIK DIK DIK DIK
1 2 3 21 22 1 ESH PE Q H BD R BA

25% Sun 57.09 4.30 10.22 10.52 2.22 4.35 3.78 1.09 2.04 1.09 1.00 6.00 4.35 8.78 10.57
Mdk 21.16 4.26 5.95 5.00 1.42 1.79 2.84 1.05 1.63 1.00 1.05 3.53 3.32 5.32 4.05
Win 19.12 2.30 4.75 4.46 1.20 1.35 2.90 1.00 1.55 1.00 1.05 3.30 3.40 5.71 6.80

50% Sun 27.52 3.71 9.46 9.12 2.33 3.06 3.40 1.08 1.96 1.02 1.00 5.67 4.27 8.35 10.31
Mdk 10.92 3.81 5.92 4.81 1.03 1.70 2.70 1.11 1.65 1.00 1.05 3.49 3.27 5.35 4.51
Win 9.54 2.10 5.00 4.38 1.12 1.30 2.95 1.02 1.62 1.05 1.00 3.56 3.50 5.83 6.58

75% Sun 18.21 3.44 8.84 8.86 1.77 2.37 3.33 1.07 1.97 1.05 1.00 5.67 4.21 8.36 9.52
Mdk 9.02 4.36 7.13 5.71 1.00 1.71 3.47 1.36 2.09 1.24 1.33 4.40 4.00 6.69 5.69
Win 7.50 2.47 5.24 5.03 1.00 1.51 3.44 1.22 1.88 1.22 1.16 4.08 4.02 6.87 7.07

100% Sun 13.63 3.49 9.12 8.93 1.66 2.27 3.55 1.08 1.99 1.05 1.00 5.66 4.43 8.52 10.29
Mdk 5.62 3.87 6.25 5.06 1.00 1.29 3.01 1.17 1.78 1.09 1.14 3.78 3.48 5.75 4.80
Win 6.17 2.63 5.77 5.63 1.00 1.29 3.72 1.35 2.23 1.39 1.27 4.21 4.55 7.26 5.58

Table 11: 75% SPGRID-SQ

SLU DLU GOR BFP THR PA TWO DIK DIK DIK DIK
Grid/deg 1 21 1 ESH PE Q H BD R BA

10x10/3 5.00 6.20 5.50 1.30 3.30 1.10 1.00 7.30 6.10 10.90 26.10
20x20/3 5.54 3.73 5.04 1.18 2.58 1.08 1.00 8.01 4.40 9.43 11.84
30x30/3 4.97 3.79 4.27 1.13 2.01 1.05 1.00 6.82 3.27 7.15 6.52
40x40/3 5.85 10.74 4.56 1.12 2.15 1.05 1.00 7.18 3.24 7.14 5.22
50x50/3 5.55 5.05 5.11 1.13 2.04 1.04 1.00 7.27 3.09 6.81 4.56
60x60/3 6.00 5.07 5.24 1.13 1.95 1.03 1.00 6.92 2.91 6.37 3.88
70x70/3 6.86 5.84 4.67 1.14 2.13 1.05 1.00 7.35 3.04 6.62 3.73
80x80/3 8.64 9.91 5.65 1.14 2.14 1.05 1.00 7.54 3.05 6.55 3.54
90x90/3 9.62 13.71 5.16 1.22 2.02 1.03 1.00 6.60 2.69 5.72 2.86

100x100/3 12.62 9.09 4.82 1.14 2.26 1.04 1.00 7.83 3.04 6.49 3.22

SLU2, SLU3, DLU22, DIKH, DIKR, and DIKBA) perform better on the Intel platform

(Mdk and Win) than on Sun platform.

5.6.5.2 Random network generators

In this section, we choose the cases whose requested OD pairs have 75% |N | distinct des-

tinations for our discussion. Results for other cases using 25% |N |, 50% |N |, and 100% |N |

distinct destinations are listed in the appendix. All of these experiments are run on the

Sun machine. The performances of SLU2 and SLU3 are always worse than SLU1. Sim-

ilarly, DLU22 is worse than DLU21. Thus we only include SLU1 and DLU21 here for

comparison.

SPGRID-SQ family: Table 11 shows that label-correcting codes TWOQ, PAPE and

BFP perform the best in this SPGRID-SQ family. Dijkstra-based codes such as DIKBD,
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Table 12: 75% SPGRID-WL

SLU DLU GOR BFP THR PA TWO DIK DIK DIK DIK
Grid/deg 1 21 1 ESH PE Q H BD R BA

16x64/3 5.66 3.50 4.38 1.09 2.05 1.05 1.00 6.22 3.88 8.42 9.69
16x128/3 5.70 3.59 5.15 1.12 1.99 1.05 1.00 5.82 3.61 8.20 8.12
16x256/3 5.65 4.46 4.90 1.10 2.03 1.05 1.00 5.76 3.70 8.49 7.83
16x512/3 7.11 3.18 5.60 1.09 2.04 1.03 1.00 5.41 3.53 8.33 7.24
64x16/3 3.93 3.69 4.81 1.13 2.22 1.06 1.00 8.39 3.25 6.78 5.60

128x16/3 3.38 3.76 4.97 1.15 2.02 1.03 1.00 8.46 2.90 5.78 3.68
256x16/3 3.39 4.85 4.86 1.12 1.93 1.03 1.00 9.61 2.98 5.77 3.27
512x16/3 3.51 5.00 5.06 1.15 1.80 1.04 1.00 10.62 2.97 5.64 3.02

Table 13: 75% SPGRID-PH

SLU DLU GOR BFP THR PA TWO DIK DIK DIK DIK
Grid/deg 1 21 1 ESH PE Q H BD R BA

32x32/6 4.11 11.70 1.28 1.37 1.12 3.94 2.32 1.87 4.10 2.49 1.00
16x32/5 5.47 9.00 1.91 1.14 1.00 2.03 1.48 3.12 6.22 4.51 2.03
64x32/7 6.26 16.39 1.59 3.05 2.24 10.78 5.34 1.96 3.68 2.43 1.00

128x32/8 9.48 19.82 1.98 6.72 3.14 20.74 9.85 1.93 3.48 2.34 1.00
256x32/8 13.95 24.60 2.23 13.26 3.46 25.35 11.65 1.88 3.27 2.25 1.00

DIKR, and DIKBA perform relatively worse for smaller networks. DIKBD perform

slightly worse than THRESH, but is the fastest Dijkstra’s code. SLU1 and DLU21 per-

form similarly to GOR1 but become worse for larger networks.

SPGRID-WL family: Table 12 shows that label-correcting codes TWOQ, PAPE and

BFP perform the best in this SPGRID-WL family. THRESH is only slightly worse than

BFP . DIKBD is the fastest Dijkstra’s code, but DIKBA catches up for larger LONG

cases. SLU1 is faster in the LONG cases, DLU21 is faster in the WIDE cases, and they

both are slightly better than GOR1. DIKR performs the worst for the WIDE cases, but

DIKH performs the worst for the LONG cases.

SPGRID-PH family: Table 13 shows that DIKBA, DIKH, and GOR1 perform the

best. DIKR, DIKBD and THRESH perform slightly worse but are still relatively better

than the remaining codes. BFP , TWOQ, SLU1 and PAPE perform worse when the

network become larger. DLU21 perform the worst overall.
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Table 14: 75% SPGRID-NH

SLU DLU GOR BFP THR PA TWO DIK DIK DIK DIK
Grid/deg 1 21 1 ESH PE Q H BD R BA

16x32/5 7.89 13.07 2.56 1.01 1.21 1.01 1.00 4.39 2.07 4.11 3.54
32x32/6 8.39 23.66 2.06 1.04 1.00 1.07 1.07 3.50 1.45 2.76 1.90
64x32/7 10.92 29.59 1.93 1.18 1.00 1.24 1.23 3.20 1.21 2.18 1.35

128x32/8 15.79 33.39 1.87 1.19 1.00 1.20 1.20 3.04 1.06 1.85 1.13

Table 15: 75% SPRAND-S4 and SPRAND-S16

SLU DLU GOR BFP THR PA TWO DIK DIK DIK DIK
|N |/deg 1 21 1 ESH PE Q H BD R BA

128/4 9.00 7.00 4.00 1.50 1.50 1.00 1.00 6.50 5.50 10.50 12.00
256/4 12.00 12.60 3.90 1.00 1.30 1.00 1.00 5.90 5.10 8.80 4.10
512/4 16.37 22.27 3.40 1.21 1.00 1.19 1.23 4.45 3.79 6.16 2.73

1024/4 36.87 66.55 3.81 1.77 1.00 1.77 1.81 4.10 4.48 5.23 1.77
2048/4 103.60 144.95 3.11 1.83 1.00 2.06 2.09 2.98 3.96 3.46 1.03
128/16 10.43 14.14 3.00 1.00 1.00 1.14 1.00 2.57 2.14 3.57 4.29
256/16 25.42 26.36 3.06 1.24 1.00 1.27 1.27 2.64 2.33 3.36 2.30
512/16 78.31 59.22 3.21 1.38 1.00 1.59 1.59 2.49 2.24 3.04 1.63

1024/16 159.01 147.26 2.82 1.43 1.00 2.01 1.92 1.98 2.01 2.31 1.19
2048/16 270.46 262.17 2.80 1.68 1.22 2.89 2.73 1.73 1.95 1.90 1.00

SPGRID-NH family: Table 14 shows that all label-correcting codes perform the best,

followed by the label-setting codes. SLU1 and DLU21 perform the worst, especially for

larger networks.

SPRAND-S family: Table 15 shows that label-correcting codes perform the best. Label-

setting codes are slightly worse than label-correcting codes, and tend to perform relatively

better for cases with larger degree. SLU1 and DLU21 perform the worst, especially for

networks with more nodes and larger degrees.

SPRAND-D family: Table 16 shows that label-setting codes perform the best. Label-

correcting methods such as THRESH, GOR1, and BFP perform slightly worse than the

label-setting codes. For smaller networks (e.g. |N | ≤ 512), SLU1 and DLU21 perform the

worst. PAPE and TWOQ perform very well for smaller networks, but become the worst

for larger and denser cases.

SPRAND-LENS family: Table 17 shows that label-setting codes perform the best for

cases with smaller arc length. For larger arc length, label-correcting codes perform the best.
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Table 16: 75% SPRAND-D4 and SPRAND-D2

SLU DLU GOR BFP THR PA TWO DIK DIK DIK DIK
|N |/deg 1 21 1 ESH PE Q H BD R BA

128/32 7.64 10.07 2.50 1.21 1.00 1.29 1.29 1.79 1.71 2.21 2.36
128/64 4.38 5.34 2.22 1.09 1.00 1.22 3.28 1.12 1.06 1.28 1.16
256/64 12.61 11.53 2.47 1.28 1.00 1.60 1.56 1.12 1.07 1.30 1.06

256/128 8.34 7.56 2.78 1.49 1.30 2.03 1.97 1.02 1.01 1.12 1.00
512/128 27.97 15.53 3.01 1.80 1.45 3.13 2.97 1.06 1.08 1.13 1.00
512/256 15.70 8.89 3.40 2.36 1.99 4.66 4.33 1.00 1.03 1.03 1.01

1024/256 30.46 22.95 3.81 3.14 2.61 8.41 7.02 1.00 1.10 1.05 1.05
1024/512 17.01 13.19 4.33 4.05 3.33 12.17 9.81 1.00 1.13 1.06 1.12
2048/512 19.60 15.53 4.35 5.29 4.01 19.17 13.31 1.00 1.07 1.01 1.11

2048/1024 10.30 8.10 4.99 7.62 5.46 30.65 19.84 1.00 1.06 1.00 1.15

Table 17: 75% SPRAND-LENS4

SLU DLU GOR BFP THR PA TWO DIK DIK DIK DIK
|N |/deg [L, U ] 1 21 1 ESH PE Q H BD R BA

256/4 [1, 1] 4.03 4.34 2.72 5.79 5.10 11.31 9.24 2.41 1.00 2.14 1.86
[0, 10] 3.53 3.94 2.03 2.61 2.33 2.75 2.75 1.94 1.00 1.86 1.39

[0, 102] 5.17 5.39 2.43 1.30 1.00 1.61 1.48 2.87 1.83 3.22 1.96
[0, 104] 12.80 13.70 3.60 1.00 1.30 1.00 1.00 5.80 5.20 8.70 4.60
[0, 106] 14.00 14.89 4.44 1.11 1.44 1.00 1.00 6.56 9.89 12.67 7.78

1024/4 [1, 1] 20.00 35.44 4.67 35.38 22.67 49.16 57.99 2.59 1.00 2.05 3.55
[0, 10] 18.74 31.19 3.81 22.92 16.26 33.66 31.79 2.22 1.00 1.91 1.13

[0, 102] 21.19 36.03 3.52 4.98 3.38 6.61 5.07 2.63 1.65 2.58 1.00
[0, 104] 36.58 60.04 3.63 1.68 1.00 1.72 1.72 4.04 4.20 5.06 1.61
[0, 106] 40.03 68.74 3.60 1.14 1.10 1.01 1.00 4.76 4.86 7.42 1.96

Both SLU1 and DLU21 perform the worst, especially for cases with more nodes and larger

ranges of arc length.

SPRAND-LEND family: Table 18 shows that label-setting codes perform the best.

GOR1 performs slightly worse than label-setting codes. Label-correcting codes except

GOR1 perform well for cases with larger range of arc length, but become the worst for

Table 18: 75% SPRAND-LEND4

SLU DLU GOR BFP THR PA TWO DIK DIK DIK DIK
|N |/deg [L, U ] 1 21 1 ESH PE Q H BD R BA

256/64 [1, 1] 8.43 7.57 3.19 7.57 7.33 36.57 24.05 1.00 1.10 1.05 1.76
[0, 10] 8.43 7.62 2.67 4.24 3.71 18.67 11.48 1.00 1.10 1.05 1.29

[0, 102] 9.16 8.42 2.37 2.05 1.74 6.16 4.47 1.00 1.00 1.05 1.21
[0, 104] 13.54 12.31 2.54 1.31 1.00 1.62 1.54 1.23 1.15 1.38 1.15
[0, 106] 12.29 11.36 2.43 1.21 1.14 1.57 1.57 1.14 1.50 1.43 1.00

1024/256 [1, 1] 20.13 15.87 4.88 39.11 37.08 344.86 235.18 1.00 1.28 1.01 17.69
[0, 10] 21.49 16.24 4.49 20.73 17.26 226.33 122.45 1.00 1.31 1.01 4.36

[0, 102] 22.29 17.68 4.02 9.16 7.43 86.06 43.06 1.00 1.24 1.02 1.52
[0, 104] 30.57 23.29 3.84 3.29 2.66 8.18 6.87 1.00 1.12 1.05 1.07
[0, 106] 34.98 27.26 3.82 1.98 2.11 2.91 2.86 1.07 1.22 1.16 1.00
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Table 19: 75% SPRAND-PS4

SLU DLU GOR BFP THR PA TWO DIK DIK DIK DIK
|N |/deg P 1 21 1 ESH PE Q H BD R BA

256/4 0 11.70 12.60 3.70 1.00 1.30 1.00 1.00 5.70 5.20 8.70 4.60
104 13.22 14.11 4.00 1.11 1.44 1.11 1.00 7.00 5.11 9.33 5.56
105 12.80 13.50 3.90 1.10 2.20 1.00 1.00 13.00 5.00 8.80 7.20
106 12.60 13.70 3.80 1.00 3.20 1.00 1.00 21.70 8.00 10.30 7.10

1024/4 0 37.17 65.28 3.64 1.65 1.00 1.64 1.65 4.00 4.18 5.04 1.71
104 36.95 60.61 3.62 1.67 1.00 1.69 1.70 4.07 3.88 4.76 1.66
105 28.90 47.06 2.69 1.24 1.00 1.27 1.27 4.63 3.36 3.45 1.56
106 19.78 34.31 2.19 1.00 1.94 1.02 1.02 11.32 3.49 4.40 2.83

Table 20: 75% SPRAND-PD4

SLU DLU GOR BFP THR PA TWO DIK DIK DIK DIK
|N |/deg P 1 21 1 ESH PE Q H BD R BA

256/64 0 13.62 11.92 2.54 1.23 1.00 1.54 1.54 1.15 1.15 1.38 1.15
104 10.75 9.81 2.12 1.06 1.00 1.38 1.31 1.50 1.25 1.50 1.31
105 10.29 9.24 1.94 1.00 1.65 1.24 1.18 2.65 1.53 1.88 1.65
106 10.24 9.24 2.00 1.00 1.82 1.24 1.24 3.24 1.88 2.06 1.88

1024/256 0 28.76 22.75 3.75 3.21 2.66 8.31 6.97 1.00 1.10 1.05 1.06
104 17.02 13.59 2.26 1.85 1.62 4.78 4.13 1.07 1.02 1.01 1.00
105 9.26 6.98 1.18 1.00 1.56 2.49 2.11 2.07 1.70 1.68 1.66
106 9.07 6.98 1.18 1.00 2.15 2.52 2.15 2.81 2.06 2.05 2.00

cases with smaller arc length. SLU1 and DLU21 perform worse for cases with more nodes

and larger range of arc length.

SPRAND-PS family: Table 19 shows that the label-correcting codes perform the best,

and are ”potential-invariant” [74]. When the range of node potential P increases, there will

be more arcs with negative lengths but not negative cycles which slow down the label-setting

codes. Although SLU1 and DLU21 perform the worst overall, they perform relatively better

when P increases.

SPRAND-PD family: Table 20 shows that both label-setting and label-correcting codes

perform best for these dense families. SLU1 and DLU21 perform the worst, although their

performances become relatively better when P increases.

NETGEN-S family: Table 21 shows that label-correcting codes are the best, followed

by the label-setting codes. SLU1 and DLU21 perform better than label-setting codes for

small networks with smaller degrees; they become significantly worse for larger cases.
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Table 21: 75% NETGEN-S4 and NETGEN-S16

SLU DLU GOR BFP THR PA TWO DIK DIK DIK DIK
|N |/deg 1 21 1 ESH PE Q H BD R BA

128/4 8.00 6.50 4.50 1.00 2.00 1.00 1.00 6.50 5.50 10.50 13.00
256/4 13.44 14.44 4.11 1.00 1.33 1.11 1.00 6.67 4.44 9.11 6.33
512/4 15.60 20.75 3.68 1.12 1.07 1.00 1.00 4.82 2.93 6.14 3.21

1024/4 44.18 71.50 3.79 1.18 1.04 1.00 1.00 4.50 2.43 5.21 2.00
2048/4 152.32 190.10 3.75 1.21 1.09 1.01 1.00 4.53 2.00 4.74 1.50
128/16 7.62 8.00 2.25 1.00 1.00 1.12 1.12 2.25 2.00 3.00 2.62
256/16 16.53 17.72 3.03 1.36 1.00 1.44 1.44 2.44 1.75 2.86 1.97
512/16 42.73 39.44 3.30 1.53 1.00 1.67 1.67 2.44 1.56 2.65 1.50

1024/16 141.41 136.49 3.36 1.59 1.00 1.80 1.82 2.32 1.30 2.33 1.28
2048/16 318.70 305.86 3.52 1.64 1.00 1.90 1.89 2.39 1.23 2.22 1.16

Table 22: 75% NETGEN-D4 and NETGEN-D2

SLU DLU GOR BFP THR PA TWO DIK DIK DIK DIK
|N |/deg 1 21 1 ESH PE Q H BD R BA

128/32 5.24 6.06 2.35 1.12 1.00 1.24 1.24 1.47 1.24 1.82 1.65
256/64 11.84 10.71 2.75 2.31 1.52 2.07 1.99 1.27 1.00 1.32 1.13

512/128 30.63 18.02 3.55 1.93 2.12 2.97 3.88 1.20 1.00 1.18 1.06
1024/256 33.91 26.59 4.04 2.39 2.66 4.01 3.89 1.09 1.00 1.09 1.03
2048/512 22.19 18.20 4.31 2.64 3.08 3.97 3.86 1.03 1.00 1.03 1.01

128/64 3.55 4.27 2.24 1.18 1.21 1.48 1.52 1.06 1.00 1.24 1.12
256/128 9.33 8.08 3.38 1.92 2.14 2.91 4.81 1.15 1.00 1.20 1.13
512/256 17.46 10.30 3.87 2.21 2.55 3.71 3.57 1.11 1.00 1.09 1.02

1024/512 16.59 12.62 4.25 2.65 3.09 4.85 4.65 1.00 1.01 1.05 1.03

NETGEN-D family: Table 22 shows that label-setting codes perform the best, followed

by the label-correcting codes. SLU1 and DLU21 perform the worst, but are relatively

better for denser cases.

NETGEN-LENS family: Table 23 shows that label-correcting codes perform the best,

followed by the label-setting codes. SLU1 and DLU21 perform the worst, especially for

larger networks. Label-setting codes perform worse when the range of arc lengths becomes

Table 23: 75% NETGEN-LENS4

SLU DLU GOR BFP THR PA TWO DIK DIK DIK DIK
|N |/deg [L, U ] 1 21 1 ESH PE Q H BD R BA

256/4 [0, 10] 13.67 13.44 4.44 1.11 1.44 1.00 1.00 6.22 1.89 3.56 1.67
[0, 102] 15.25 16.62 5.12 1.25 1.62 1.00 1.12 7.25 2.75 6.38 2.25
[0, 104] 14.44 15.11 4.33 1.11 1.44 1.00 1.00 6.33 4.33 9.33 7.44
[0, 106] 13.22 13.56 4.22 1.11 1.33 1.00 1.00 6.67 10.44 12.67 9.00

1024/4 [0, 10] 47.88 72.66 3.60 1.21 1.02 1.00 1.00 4.24 1.23 2.11 1.16
[0, 102] 43.86 71.94 3.64 1.18 1.05 1.01 1.00 4.40 1.48 2.99 1.28
[0, 104] 46.57 75.32 3.65 1.18 1.06 1.01 1.00 4.51 2.40 5.13 1.96
[0, 106] 61.76 94.82 3.64 1.19 1.03 1.00 1.01 4.31 4.27 6.70 2.10
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Table 24: 75% NETGEN-LEND4

SLU DLU GOR BFP THR PA TWO DIK DIK DIK DIK
|N |/deg [L, U ] 1 21 1 ESH PE Q H BD R BA

256/64 [0, 10] 14.40 13.50 2.50 1.20 1.30 1.20 1.20 1.30 1.10 1.20 1.00
[0, 102] 13.18 12.18 3.09 1.73 1.73 2.18 2.27 1.36 1.00 1.18 1.00
[0, 104] 11.46 10.46 2.69 1.38 1.46 2.00 1.92 1.23 1.00 1.23 1.08
[0, 106] 9.53 8.87 2.40 1.27 1.27 1.67 1.60 1.00 1.60 1.27 1.00

1024/256 [0, 10] 35.28 27.80 2.22 1.03 1.12 1.04 1.04 1.00 1.00 1.03 1.00
[0, 102] 33.84 27.00 3.77 2.40 2.78 2.90 2.90 1.06 1.01 1.04 1.00
[0, 104] 34.23 26.56 4.11 2.41 2.72 4.60 3.95 1.07 1.00 1.08 1.03
[0, 106] 33.04 25.63 3.88 2.23 2.51 3.77 3.65 1.04 1.10 1.13 1.00

Table 25: 75% SPACYC-PS4 and SPACYC-PS16

ACC SLU DLU GOR BFP THR PA TWO DIK DIK DIK DIK
|N |/deg [L, U ] 1 21 1 ESH PE Q H BD R BA

128/4 [0, 104] 1.50 1.00 2.50 1.00 2.00 2.50 1.50 2.00 4.00 1.50 4.00 7.50
256/4 [0, 104] 1.00 1.22 2.22 1.11 1.89 2.00 1.56 1.78 3.67 1.67 3.33 3.89
512/4 [0, 104] 1.00 1.38 2.90 1.36 2.74 2.17 2.21 2.50 3.50 1.29 2.74 2.26

1024/4 [0, 104] 1.00 1.47 4.18 1.41 3.06 2.18 2.47 2.82 3.82 1.24 2.59 1.71
2048/4 [0, 104] 1.00 1.31 4.29 1.30 3.38 2.27 2.78 2.95 3.61 1.06 2.27 1.18
128/16 [0, 104] 1.67 1.00 3.67 2.00 2.67 2.33 2.33 2.67 3.00 2.33 3.33 7.00
256/16 [0, 104] 1.11 1.61 3.00 1.00 2.17 1.72 2.06 2.17 2.28 1.28 2.00 2.50
512/16 [0, 104] 1.00 1.50 3.85 1.15 2.69 1.97 2.87 2.86 2.28 1.17 1.81 1.63

1024/16 [0, 104] 1.00 1.51 5.94 1.14 3.20 2.17 3.43 3.54 2.40 1.03 1.71 1.37
2048/16 [0, 104] 1.13 1.45 6.90 1.24 3.77 2.45 4.07 4.19 2.37 1.00 1.57 1.11

larger. It it not clear how the range of arc lengths affects SLU1 and DLU21.

NETGEN-LEND family: Table 24 shows that label-setting codes perform the best,

followed by the label-correcting codes. SLU1 and DLU21 perform the worst, especially for

larger networks. When the range of arc lengths becomes larger, SLU1 and DLU21 perform

slightly better.

SPACYC-PS family: Table 25 shows that SLU1 and GOR1 perform the best. DLU21

performs relatively worse for cases with more nodes and larger degrees. On the other hand,

label-setting codes perform relatively worse for cases with fewer nodes and smaller degrees.

SPACYC-NS family: Table 26 shows that SLU1 and GOR1 perform the best, followed

by the DLI21. Other label-correcting algorithms perform much worse. All label-setting

codes are even worse than the label-correcting algorithms.
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Table 26: 75% SPACYC-NS4 and SPACYC-NS16

ACC SLU DLU GOR BFP THR PA TWO DIK DIK DIK DIK
|N |/deg [L, U ] 1 21 1 ESH PE Q H BD R BA

128/4 [−104, 0] 1.00 4.00 5.00 6.00 5.00 9.00 7.00 6.00 80.00 11.00 14.00 12.00
256/4 [−104, 0] 1.00 1.20 2.60 1.20 2.30 4.50 3.40 3.20 41.50 6.80 8.90 6.90
512/4 [−104, 0] 1.00 1.19 2.65 1.15 5.98 9.25 7.94 8.42 132.42 12.27 14.88 12.44

1024/4 [−104, 0] 1.00 1.60 4.80 1.47 16.93 26.13 17.40 22.13 363.00 34.20 40.60 34.67
2048/4 [−104, 0] 1.00 1.23 4.24 1.24 21.89 36.01 36.21 46.62 848.86 46.51 55.58 47.21
128/16 [−104, 0] 1.00 1.40 1.80 1.40 3.00 6.40 7.20 6.20 43.80 7.00 8.40 7.60
256/16 [−104, 0] 1.00 1.61 3.00 1.22 4.78 10.67 16.39 11.78 131.44 10.89 13.00 11.39
512/16 [−104, 0] 1.00 1.44 3.82 1.22 11.55 31.16 57.77 47.94 521.17 28.78 32.91 29.39

1024/16 [−104, 0] 1.00 1.42 5.95 1.05 17.84 44.16 72.13 61.92 569.24 41.95 47.55 42.76
2048/16 [−104, 0] 1.00 1.33 6.72 1.13 30.49 82.06 148.13 135.75 941.90 72.38 82.54 74.28

Table 27: 75% SPACYC-PD4 and SPACYC-PD2

ACC SLU DLU GOR BFP THR PA TWO DIK DIK DIK DIK
|N |/deg [L, U ] 1 21 1 ESH PE Q H BD R BA

128/32 [0, 104] 1.00 1.38 2.50 1.12 1.75 1.75 1.62 1.75 1.38 1.25 1.62 2.25
256/64 [0, 104] 1.20 1.55 3.29 1.12 2.51 2.00 2.78 2.82 1.29 1.00 1.24 1.49

512/128 [0, 104] 1.51 1.95 6.01 1.51 3.54 2.68 4.69 4.64 1.28 1.00 1.16 1.17
1024/256 [0, 104] 1.77 3.84 12.65 1.67 4.17 3.14 5.89 5.87 1.15 1.00 1.11 1.06
2048/512 [0, 104] 1.76 4.04 12.06 1.66 4.40 3.28 6.06 5.90 1.06 1.00 1.03 1.04

128/64 [0, 104] 1.00 1.36 2.27 1.27 1.91 1.73 2.00 1.91 1.36 1.09 1.36 2.18
256/128 [0, 104] 1.49 1.58 3.45 1.45 3.03 2.46 3.61 3.58 1.17 1.00 1.15 1.27
512/256 [0, 104] 1.75 1.81 5.61 1.64 3.61 3.00 4.73 4.64 1.15 1.00 1.09 1.12

1024/512 [0, 104] 1.88 3.87 11.15 1.73 3.83 3.73 5.56 5.35 1.06 1.00 1.04 1.06
2048/1024 [0, 104] 1.75 2.80 8.54 1.66 3.99 3.53 5.31 5.13 1.01 1.00 1.02 1.04

SPACYC-PD family: Table 27 shows that all label-setting codes and GOR1 perform

the best, followed by the SLU1 which is slightly worse for larger cases. Label-correcting

codes also perform well, less than 5 times slower than ACC. DLU21 performs worse when

the network become larger. Both SLU1 and DLU21 perform relatively better for denser

cases.

Table 28: 75% SPACYC-ND4 and SPACYC-ND2

ACC SLU DLU GOR BFP THR PA TWO DIK DIK DIK DIK
|N |/deg [L, U ] 1 21 1 ESH PE Q H BD R BA

128/32 [−104, 0] 1.00 1.38 2.38 1.12 3.25 8.00 12.50 7.25 62.00 8.12 9.38 8.38
256/64 [−104, 0] 1.00 1.24 2.71 1.06 5.96 16.13 44.00 19.93 250.69 14.38 15.76 14.82

512/128 [−104, 0] 1.00 1.26 3.85 1.05 11.63 32.61 179.11 58.14 943.02 27.44 28.58 27.74
1024/256 [−104, 0] 1.00 2.11 7.31 1.03 21.87 66.24 708.88 183.48 3312.01 55.39 56.49 55.65

128/64 [−104, 0] 1.00 1.21 2.07 1.14 3.79 10.07 15.07 8.71 66.00 8.36 9.43 8.71
256/128 [−104, 0] 1.00 1.00 2.25 1.04 6.24 17.86 49.41 20.86 177.84 15.42 16.36 15.80
512/256 [−104, 0] 1.00 1.01 3.10 1.04 12.66 40.90 267.88 82.04 992.15 33.17 33.93 33.40

1024/512 [−104, 0] 1.00 2.06 6.26 1.04 23.91 75.98 703.17 233.57 4211.82 64.92 65.05 64.90
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Table 29: 75% SPACYC-P2N128 and SPACYC-P2N1024

[L, U ] ACC SLU DLU GOR BFP THR PA TWO DIK DIK DIK DIK
|N |/deg ×1000 1 21 1 ESH PE Q H BD R BA

128/16 [0, 10] 1.78 2.75 4.59 1.84 1.00 1.34 1.00 3.44 3.22 2.69 4.84 7.66
[−1, 9] 1.40 2.12 3.70 1.57 1.02 1.30 1.05 1.00 2.83 2.02 3.42 5.65
[−2, 8] 1.00 1.51 2.58 1.14 1.03 1.37 1.08 1.07 3.61 1.97 2.66 4.92
[−3, 7] 1.00 1.49 2.38 1.03 1.54 2.27 2.06 1.92 6.83 3.00 3.79 5.70
[−4, 6] 1.00 1.47 2.44 1.00 2.67 4.69 5.83 4.47 26.88 5.73 7.00 8.03
[−5, 5] 1.00 1.39 2.36 1.11 3.56 7.38 10.68 6.58 64.11 8.35 10.23 10.70
[−6, 4] 1.00 1.44 2.44 1.06 3.84 7.73 12.06 7.42 66.14 9.38 11.34 11.64

[−10, 0] 1.00 1.41 2.60 1.14 5.73 13.51 21.16 16.16 189.81 15.10 17.95 15.79
1024/16 [0, 10] 1.76 2.31 8.55 1.66 1.03 1.03 1.00 1.00 2.83 1.90 3.48 2.00

[−1, 9] 1.29 1.97 7.35 1.44 1.09 1.00 1.09 1.06 2.85 1.53 2.62 1.71
[−2, 8] 1.00 1.39 5.16 1.04 1.22 1.29 1.37 1.39 4.69 1.67 2.37 2.12
[−3, 7] 1.00 1.35 4.96 1.04 2.73 3.84 3.82 4.18 24.27 4.90 5.98 5.39
[−4, 6] 1.00 1.45 5.55 1.26 7.72 14.04 16.51 14.40 90.43 17.43 20.72 18.51
[−5, 5] 1.00 1.44 6.23 1.10 16.69 39.44 58.19 57.38 479.52 45.75 52.42 46.75
[−6, 4] 1.00 1.39 5.41 1.10 28.39 72.41 137.86 113.71 959.76 82.71 95.02 85.14

[−10, 0] 1.00 1.42 5.48 1.15 39.25 97.81 162.62 88.94 877.62 118.56 135.33 121.50

SPACYC-ND family: Table 28 shows that GOR1 and SLU1 perform the best, followed

by DLU21, which is a little worse for larger cases. All other codes (especially DIKH and

PAPE) perform significantly worse, especially for larger cases.

SPACYC-P2N family: Table 29 shows that GOR1 and SLU1 perform the best. When

[L, U ] is larger than [−3000, 7000], the other label-correcting and label-setting codes perform

well and slightly better than DLU21. However, when [L, U ] is smaller than [−3000, 7000],

these SSSP codes (except GOR1) perform significantly worse. The more negative the arc

lengths are, the worse they become.

5.7 Summary

After these comprehensive computational experiments, we have several observations.

1. Among the eight different pivoting rules for sparsity, the dynamic Markowitz and its

variant that employs simple tie-breaking technique usually produce fewer fill-ins than

other pivoting rules.

2. Among the three different SLU implementations, the bucket implementation SLU1

outperforms the other two implementations that are based on binary heaps, for all
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cases. Similarly, the bucket implementation of DLU2, DLU21, has better perfor-

mance than the heap implementation.

For general larger networks, SLU1 and DLU21 can not compete with the best of the

state-of-the-art SSSP codes , except for acyclic networks. Nevertheless, SLU1 and

DLU21 do not perform worst for all cases.

For dense graphs, usually DLU21 performs better than SLU1; for sparse graphs,

usually SLU1 is better than DLU21. Unlike other SSSP algorithms which perform

consistently regardless the number of distinct destinations, SLU1 and DLU21 per-

form relatively better for MPSP problems of more distinct requested destinations than

for problems of fewer distinct requested destinations.

3. The Asia-Pacific flight network is the only real-world network tested in this thesis. Al-

though it is sparse (112 nodes, 1038 arcs), DLU21 performs better than SLU1, which

in turn outperforms all of the implemented label-setting codes. The label-correcting

codes perform similarly to SLU1 and DLU21. The Floyd-Warshall algorithm is in no

case competitive with other SSSP algorithms or our proposed MPSP algorithms.

4. In most SPGRID families, the label-correcting codes usually perform the best, except

for the SPGRID-PH family for which the label-setting codes perform the best. SLU1

and DLU21 have better performance on the SPGRID-SQ and SPGRID-WL families

than other SPGRID families.

For each SPGRID family, label-setting codes usually perform relatively worse on

smaller networks.

5. SLU1 and DLU21 are usually slower than other label-correcting and label-setting

codes for most SPRAND families. Label-correcting codes perform better for most of

the sparse SPRAND families, but label-setting codes perform better for most dense

SPRAND families.

When the range of arc lengths decreases (e.g., ≤ 10), label-correcting codes tend

to perform much worse. When the range of arc lengths increases on sparse graphs,

label-setting codes will perform only slightly worse.
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6. SLU1 and DLU21 are usually slower than other label-correcting and label-setting

codes for most NETGEN families. Label-correcting codes perform better for most

sparse NETGEN families, but label-setting codes perform better for most dense NET-

GEN families.

When the range of arc lengths increases on sparse graphs, label-setting codes tend to

perform a little worse.

7. SLU1 and GOR1 usually outperform other codes for all SPACYC families except

the SPACYC-PD family, for which the label-setting codes perform asymptotically the

best. DLU21 performs asymptotically the worst for cases whose arc lengths are all

positive. However, all label-correcting codes (except GOR1) and label-setting codes

perform significantly worse for cases with negative arc lengths.

5.7.1 Conclusion and future research

Although our computational experiments are already extensive, more thorough tests may

still be required to draw more solid conclusions. There are too many factors that may affect

the performance of MPSP algorithms, such as requested OD pairs, arc lengths, network

topologies, and node orderings.

In our experiments, for each test case, we generate only one set of requested OD pairs.

Different requested OD pairs may affect the performance since the distribution of requested

pairs in the OD matrix will not affect the SSSP algorithms but may affect our MPSP

algorithms.

By specifying the same numbers of nodes and arcs but different random seeds, we may

generate several different test cases with the same topology but different arc lengths. A more

thorough experiment could generate several such networks and test all of the algorithms on

these cases to compute their average performance. Due to time constraints, in this chapter

we use only one random seed for each topology.

Different node orderings will significantly affect our MPSP algorithms. In this chapter,

we choose a node ordering aimed at reducing the total fill-ins in the LU factorization. As

discussed in Section 4.4, another ordering consideration is to group the requested OD pairs
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and assign them higher indices. This is difficult to test for randomly generated networks

and requested OD pairs. It may be worth trying for some real-world applications where

both the network topology and requested OD pairs are fixed.

Our limited results show that our MPSP algorithms seem to perform worse for gen-

eral larger networks. This may make sense since after all SLU and DLU are algebraic

algorithms, although we create graphical implementations for testing. In particular, SLU

and DLU are more suitable for cases whose arc lengths are randomly distributed for all

cases since they are designed to work independent of arc lengths. They are based on the

ordering of triple comparisons. The sequence of triple comparisons is fixed and unavoidable

in our MPSP algorithms. Thus, even if there exists some arc with a very large length, our

algorithms could not avoid some trivial triple comparisons involving this arc, although in-

tuitively we know in advance these operations are wasteful. Conventional SSSP algorithms,

on the other hand, are based more on the comparison of arc lengths. For example, the

greedy algorithm (Dijkstra’s) only does triple comparisons on nodes with the smallest dis-

tance label in each iteration. Adding some ”greedy” ideas to our MPSP algorithms might

help them avoid many wasteful operations. However, it is still not clear how to integrate

these two different methodologies.

If we suspect our MPSP algorithms may perform worse than conventional SSSP algo-

rithms for most cases, we can design an experiment by generating the requested OD pairs

most favorable to our MPSP algorithms. In particular, since both SLU and DLU can com-

pute optimal distance faster for OD pairs with larger indices, the most favorable settings

for our MPSP algorithms are: (a) find an optimal (or a very good) sparse node ordering,

and (b) in that ordering, generate k requested OD pairs that span the k entries in the

OD matrix in a line perpendicular to the diagonal entries. That is, entries (n, n − k + 1),

(n − 1, n − k + 2), . . . , (n − k + 2, n − 1), (n − k + 1, n) will be the set of requested OD

pairs. Such a setting will force the conventional SSSP to solve k SSSP problems, but will be

most advantageous for our MPSP algorithms since they are not only in the sparse ordering

but are also the closest to the ”southeastern” corner of the OD matrix in the new ordering.
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If experiments on many random graphs with such settings still show that our MPSP algo-

rithms do not outperform the conventional SSSP algorithms, we would conclude that our

MPSP algorithms are indeed less efficient.

The experiments in this chapter are just a first step in evaluating algorithmic efficiency

when solving general MPSP problems. More thorough experiments will be done in the

future.
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