
CHAPTER VI

PRIMAL-DUAL COLUMN GENERATION AND

PARTITIONING METHODS

We have briefly introduced the primal-dual methods in Section 2.4 and key variable de-

composition in Section 2.3.3. In this chapter, we will combine these two methods to solve

MCNF problems.

6.1 Generic primal-dual method

The primal-dual method is a dual-ascent LP solution method which starts with a feasible

dual solution, and then iteratively constructs a primal feasibility subproblem called the

restricted primal problem (RPP) based on the complementary slackness (CS) conditions. It

uses the optimal dual solution of the RPP to improve the current dual solution if primal

infeasibility still exists. The algorithm terminates when all primal infeasibility disappears.

6.1.1 Constructing and solving the RPP

Suppose we are given a dual feasible solution (σ,−π) where each σk is a free dual variable

associated with the convexity constraint (or, in other words, flow balance constraint) for

commodity k, and each πa ≥ 0 corresponds to the bundle constraint for arc a. Using the

arc-path MCNF formulation as introduced in Section 2.3.2, we can identify the set of zero-

reduced-cost columns Q = {Qk, ∀k ∈ K} and A0, where Qk := {p : PCc+π
p = σk, p ∈ P k}

for each commodity k and A0 := {a : πa = 0} for each arc a. Define A
+ := A\A0 = {a : πa >

0}. For each arc a ∈ A, we assign a nonnegative slack variable sa = ua−
∑

k∈K

∑

p∈QK

(Bkδ
p
a)fp

and two nonnegative artificial variables w+
a and w−

a representing the amount of primal

infeasibility. The complementary slackness condition (CS.1) in Section 2.3.2 implies that

sa = 0 for each a ∈ A+. The RPP is to minimize the sum of all artificial variables subject to

the constraints whose variables have zero reduced cost in the dual feasible solution (σ,−π).

155

Z∗
RP = 0

Given a feasible dual soluion (σ,−π)

Yes

No

Yes

No

Construct the RPP

Solve the RPP to obtain
optimal solution (γ∗,−ρ∗) and objective Z∗

RP

Identify max step length θ∗

OPTIMAL

θ∗ = ∞ Primal INFEASIBLE

Update new feasible dual solution
(σ′,−π′) = (σ,−π) + θ∗(γ∗, ρ∗)

Figure 10: Generic primal-dual method for arc-path form of multicommodity flow problem

The RPP is expressed as follows:

min
∑

a∈A

(w+
a + w−

a) = Z∗
RP (f, s, w) (P RPP)

s.t.
∑

p∈Qk

fp = 1 ∀k ∈ K (6.1)

∑

k∈K

∑

p∈Qk

(Bkδpa)fp + sa + (w
+
a − w−

a) = ua ∀a ∈ A0 (6.2)

∑

k∈K

∑

p∈Qk

(Bkδpa)fp + (w+
a − w−

a) = ua ∀a ∈ A+ (6.3)

fp ≥ 0 ∀p ∈ Qk, ∀k ∈ K

sa ≥ 0 ∀a ∈ A0 ; w+
a ≥ 0, w

−
a ≥ 0 ∀a ∈ A

156

whose dual is

max
∑

k∈K

γk +
∑

a∈A

ua(−ρa) = Z∗
RD(γ, ρ) (D RPP)

s.t. γk +
∑

a∈A

Bkδpa(−ρa) ≤ 0 ∀p ∈ Qk, ∀k ∈ K (6.4)

0 ≤ ρa ≤ 1 ∀a ∈ A0

−1 ≤ ρa ≤ 1 ∀a ∈ A+

γk : free ∀k ∈ K

where γk are the dual variables for the convexity constraint (6.1) and −ρa are the dual

variables for the bundle constraints (6.2) and (6.3). By defining PCρ
p =

∑

a∈A

Bkδ
p
aρa, the

first constraint (6.4) of D RPP can be rewritten as PCρ
p ≥ γk, for each p ∈ Qk and each

k ∈ K.

RPP is a LP, thus can be solved by any LP method. Section 6.1.4 discusses the de-

generacy issues when generic primal-dual methods are used to solve RPP. Section 6.2 will

discuss how to use Rosen’s key variable decomposition method [273] to solve the RPP.

If the optimal objective value of the RPP is positive, which means there must exist

primal infeasibility when using only the current column set {Q ∪ A0} to solve the original

problem, then the optimal dual solution of the RPP can be used as an improving direc-

tion for the current dual solution (this will be explained in Section 6.1.2). On the other

hand, if the optimal objective value of the RPP is zero, we have achieved primal feasibility

while maintaining dual feasibility and complementary slackness; thus, we have the optimal

solution.

6.1.2 Improving the current feasible dual solution

In this section, we will explain why the optimal dual solution of the RPP is an improving

direction for the current feasible dual solution (σ,−π).

Suppose (γ∗,−ρ∗) is an optimal dual solution for the RPP. Let (σ′,−π′) := (σ,−π) +

θ(γ∗,−ρ∗). If the optimal objective value of RPP is positive, that is, Z∗
RP (f, s, w) > 0, then

moving along the direction (γ∗,−ρ∗) will increase the dual objective value since ZD(π
′, σ′)

157

= ZD(π, σ) + θZRD(ρ
∗, γ∗) > ZD(π, σ) where ZRD(ρ

∗, γ∗) = Z∗
RP (f, s, w) > 0.

Furthermore, for each commodity k and path p ∈ Qk, the associated dual constraint

∑

a∈A

Bkδ
p
a(−π′a) +σ

′
k ≤ PCc

p+ θ(
∑

a∈A

Bkδ
p
a(−ρ∗a) + γ∗k) ≤ PCc

p always holds for any positive

θ. Similarly, for each arc a ∈ A0, the associated dual constraint π′ = π + θρ∗ ≥ 0 holds for

any positive θ. That is, if we move the current dual solution (σ,−π) to (σ′,−π′) along the

direction of (γ∗,−ρ∗), then for any positive step length θ the dual objective is improving

and columns of {Q ∪A0} will have nonnegative reduced costs in the next iteration.

On the other hand, for column p ∈ P k\Qk or arc a ∈ A+, if we choose a large step length

θ, the associated dual constraint PCc
p+ θ(

∑

a∈A

Bkδ
p
a(−ρ∗a) + γ∗k) ≤ PCc

p or π
′ = π + θρ∗ ≥ 0

may not hold since
∑

a∈A

Bkδ
p
a(−ρ∗a) + γ∗k > 0 may be true for p ∈ P k \Qk, and ρ∗ < 0 may

be true for a ∈ A+.

Thus, (γ∗,−ρ∗) is a feasible direction, but the step length θ needs to be smaller than

a specific threshold to maintain dual feasibility. If such a threshold does not exist, that is,

if we can increase θ indefinitely while dual feasibility is always preserved, then the dual is

unbounded and the primal is infeasible.

If there exists a finite optimal solution, then there must exist a finite threshold θ∗

representing the maximum step length such that (σ,−π) + θ∗(γ∗,−ρ∗) is dual feasible

but (σ,−π) + θ(γ∗,−ρ∗) is not, for any θ > θ∗. In particular, let θ1 = min
k∈K

{θk :=

min
p∈Pk\Qk and PC

ρ∗
p <γ∗

k

PCc+π
p −σk

γ∗
k
−PCρ∗

p

}, and θ2 = min
a∈A+ and ρ∗a<0

{θa :=
πa
−ρ∗a
}. Then, θ∗ := min{θ1, θ2}.

That is, θ1 and θ2 are the threshold for columns in P
k \ Qk and A+ respectively, and the

maximum step length is the smaller of these two values.

6.1.3 Computing the step length θ∗

The step length θ∗ := min{θ1, θ2}. θ2 can be easily computed by scanning each arc a in A
+

to find the one satisfying ρ∗a < 0 with the smallest value of
πa
−ρ∗a
. Computing θ1 requires more

consideration since it is not clear how to choose the path p ∈ P k \Qk satisfying PCρ∗

p < γ∗k

with the smallest value of
PCc+π

p −σk

γ∗
k
−PCρ∗

p

.

Let sp(k) denote the shortest path for commodity k. If θ is large enough that PC c+π+θρ∗

sp(k)

< σk+θγ
∗
k , then the dual vector (σ

′,−π′) = (σ,−π) + θ(γ∗,−ρ∗) is infeasible for step length

158

θ. The relationship between step length θ and dual feasibility can be observed from Figure

11.

θ

for commodity k

θ̂0

solid line: yp(θ) = PCc+π
p + θPC

ρ∗

p for path p

dased line: yk(θ) = σk + θγ∗k
y(θ)

θ∗k θ̂2 θ̂1

p1

p2

p3

Figure 11: Illustraion on how to obtain θ∗k for commodity k

In particular, we can draw a dashed line yk(θ) = σk + θγ∗k for commodity k, and draw a

solid line yp (θ) = PCc+π
p +θPCρ∗

p for each path p (see Figure 11). Then, θ1 makes (σ′,−π′)

= (σ,−π) + θ1(γ∗,−ρ∗) infeasible if and only if there exists some path p and commodity

k such that yp
(

θ1
)

= PC
c+π+θ1ρ∗

sp(k) < σk + θ1γ∗k = yk
(

θ1
)

. In other words, to test whether

a step length θ makes the dual solution infeasible, we simply compute the shortest path

sp(k) for each commodity k, and then compare the value of ysp(k) (θ) with yk (θ) for each

commodity k. If there exists some commodity k such that ysp(k) (θ) < yk (θ), then we know

θ is still too large.

By setting yk (θ) = yp (θ), we can solve for θ̂p so that σk + θ̂pγ
∗
k = PCc+π

p + θ̂pPC
ρ∗

p ,

and θ1 = min
p

θ̂p. Since the number of paths connecting an OD pair k may be large, how to

efficiently compute θ1 is itself a challenging problem.

Polak [268] gives a Floyd-Warshall like algorithm to solve this problem, but its imple-

mentation is not clear. Barnhart and Sheffi [32, 38] use a shortest path procedure employing

a multiple labeling scheme which first determines all possible value of PCρ∗

p for each path

p ∈ P k and for each OD pair k. Then, of all the possible paths with a specific value of

PC
ρ∗

p , they determine the shortest one using arc length c+ π. However, it is also not clear

how to efficiently implement this multiple labeling scheme.

Here we propose a binary search method and an iterative method to compute θ∗.

159

6.1.3.1 Binary search method for finding θ∗

The idea of our binary search method is to identify the range [θl, θu] for θ1 such that

ysp(k) (θl) > yk (θl) for each commodity k, and ysp(k) (θu) < yk (θu) for some commodity

k. Then we iteratively shrink this range until its width is smaller than a threshold ε (the

machine precision number, for example).

Since θ∗ := min{θ1, θ2}, we can first identify θ2, then use it to search for θ1. In particular,

let sp(k) denote the shortest path for commodity k using c + π′ as the arc lengths. If

ysp(k) (θ2) > yk (θ2) for each commodity k, then it means θ2 < θ1 and thus θ
∗ := θ2.

Otherwise, we can use θ2 as θu to start the binary search for θ
∗ := θ1.

Let K = {(si, ti)} be the initial set of requested OD pairs. Procedure bins theta(K,π, σ,

ρ∗, γ∗) first finds for θ′ = θ2 = min
a∈A+ and ρ∗a<0

{θa :=
πa
−ρ∗a
} if it exists. Furthermore, if θ′ = θ2

makes (σ′,−π′) = (σ,−π) + θ′(γ∗,−ρ∗) feasible, then θ∗ = θ2 has been identified.

If there exists no arc a ∈ A+ such that ρ∗a < 0, then we use any positive θ
′ to start the

binary search. In particular, if θ′ makes (σ′,−π′) feasible (i.e., ysp(k) (θ
′) > yk (θ

′) for each

k), then we set θl = θ′, θu = 2θ
′ and then test whether θu makes (σ

′,−π′) infeasible. If so,

then we find a range [θl, θu] for θ
∗ where θu = 2θl. Otherwise, we keep doubling θl and θu

until θu makes (σ
′,−π′) infeasible.

If, on the other hand, the initial θ′ makes (σ′,−π′) infeasible, then we set θl =
1
2θ

′,

θu = θ′ and then test whether θl makes (σ
′,−π′) feasible or not. Using a similar procedure

as in the previous paragraph but searching along the opposite direction, a range [θl, θu = 2θl]

contains θ∗ can be identified.

After we obtain the range [θl, θu] for θ
∗, we can set θ′ = θl+θu

2 and check whether θ′ can

be used as a new upper bound θu (or a new lower bound θl) so that the range [θl, θu] is cut

in half. We iterate until the width is smaller than a threshold ε.

To guarantee that θ∗ is sufficiently accurate, we may set the threshold ε to be the

machine precision number, which is usually 10−9 or even smaller. However, such a small

threshold value may require many iterations of binary search and makes the procedure

inefficient. Next we propose an iterative method, which we will use for our implementation.

160

Procedure bins theta(K := {(si, ti)}, π, σ, ρ
∗, γ∗)

begin
[θl, θu, OD] = FindRange(K,π, σ, ρ∗, γ∗);
Let θ′ = θu
while θu > θl + ε

Let θ′ = θl+θu
2 ,

OD = UpdateOD(OD, π, σ, θ′);
if OD 6= ∅ then θu := θ′

else θl := θ′

return θ∗ = θ′

end

Subprocedure FindRange(K,π, σ, ρ∗, γ∗)
begin

Set an initial θ0 > 0, let Â
+ = {a : a ∈ A+ and ρ∗a < 0} and OD = K

if Â+ 6= ∅ then θ′ := min
a∈Â+

{θa :=
πa
−ρ∗a
}

else θ′ = θ0

Initialize θl = θu = θ′

OD = UpdateOD(OD, π, σ, θ′);
if OD 6= ∅ then ζ1 = 1,
else if Â+ 6= ∅

return [θl, θu, OD]
if ζ1 = 1 then ζ2 = 1 and [ωl, ω

′, ωu] := [
1
2 , 1,

1
2]

else ζ2 = 0 and [ωl, ω
′, ωu] := [1, 2, 2]

while ζ1 = ζ2
if ζ2 = 0 then reset OD = K

OD = UpdateOD(OD, π, σ, θ′);
if OD 6= ∅ then ζ2 = 1
else ζ2 = 0
if ζ1 = ζ2 then [θl, θ

′, θu] := [θl × ωl, θ
′ × ω′, θu × ωu]

return [θl, θu, OD]
end

Subprocedure UpdateOD(OD, π, σ, θ′)
begin

Compute (π′, σ′) := (π, σ) + θ′(ρ∗, γ∗)
Using c+ π′ as arc lengths, use a MPSP algorithm to compuate sp(k) ∀k ∈ OD

Remove those commodities k satisyfing PCc+π′

sp(k) ≥ σ′k from the set OD

return OD

end

161

6.1.3.2 Iterative method for finding θ∗

From Figure 11, we know that for each commodity k, θ∗k can be determined by the inter-

section of yk (θ) = σk + θpγ
∗
k and yp (θ) = PCc+π

p + θpPC
ρ∗

p for some path p from origin sk

to destination tk. The challenge will be to efficiently determine the right path p for each

commodity k.

Procedure iter theta(K := {(si, ti)}, π, σ, ρ
∗, γ∗)

begin
[θl, θu, OD] = FindRange(K,π, σ, ρ∗, γ∗);
if θl = θu

return θ∗ = θu
Set θ̂0 := θu, t = 0
if OD = ∅ then reset OD := K

while OD 6= ∅
Compute (π′, σ′) := (π, σ) + θ′(ρ∗, γ∗), t := t+ 1
Using c+ π′ as arc lengths, solve the MPSP problem to find sp(k) ∀k ∈ OD

Trace path sp(k) to compute PCρ∗

sp(k) for each commodity k ∈ OD

Compute θ̂t = min
k∈OD

PCc+π′

sp(k)
−σk

γ∗
k
−PCρ∗

sp(k)

OD = UpdateOD(OD, π, σ, θ̂t);
return θ∗ = θ̂t

end

Our iterative method uses an initial θ̂0 that produces an infeasible dual solution (σ′,−π′)

= (σ,−π) + θ̂0(γ∗,−ρ∗), and then solves the MPSP problem to find sp(k) and PCc+π′

sp(k) for

each commodity k ∈ OD. Using the shortest path sp(k) for commodity k, we can also

compute PCρ

sp(k) and determine a better θ̂
1 =

PCc+π′

sp(k)
−σk

γ∗
k
−PCρ∗

sp(k)

by finding the intersection of the

line yk(θ) and the line ysp(k)(θ).

Using the new θ̂1, we can update OD, the set of commodities that still satisfies yk(θ̂
1) >

ysp(k)(θ̂
1). Let θ̂t denote the step length in the tth iteration computed by this iterative

method. It is easy to observe that θ̂1 < θ̂0, and that θ̂t+1 < θ̂t. Thus, the sequence

θ̂t is decreasing. Furthermore, if yk′(θ̂
t) < ysp(k′)(θ̂

t) for commodity k′, then yk′(θ̂
t+1) <

ysp(k′)(θ̂
t+1). These properties can be easily verified from Figure 11. Thus, our iterative

method iteratively shrinks OD and θ̂t until finally OD becomes empty.

We use Figure 11 to illustrate the procedure. Suppose commodity k has only three

possible OD paths: p1, p2, and p3. We start with an initial θ̂
0 that satisfies yk(θ̂

0) >

162

ysp(k)(θ̂
0) for commodity k. Then, using c + π + θ̂0ρ∗ as the arc lengths, we identify the

shortest path sp(k) = p1. We compute the intersection of yk(θ) and ysp(k)(θ) to determine

a new step length θ̂1. Using c + π + θ̂1ρ∗ as the arc lengths, we identify the shortest path

sp(k) = p2 that still satisfies yk(θ̂
1) > ysp(k)(θ̂

1). We compute the intersection of yk(θ) and

ysp(k)(θ) to determine a new step length θ̂
2. From Figure 11, we find yk(θ̂

2) > yp3(θ̂
2) where

path p3 is the shortest path for commodity k using c + π + θ̂2ρ∗ as the arc lengths. After

computing θ̂3 =
PCc+π′

p3
−σk

γ∗
k
−PCρ∗

p3

we find that yk(θ̂
3) = ysp(k)(θ̂

3). Therefore, we have determined

the step length θ∗k = θ̂3 for commodity k.

In the worst case, this iterative method may have
∑

k

∣

∣P k
∣

∣ iterations of MPSP compu-

tations, where P k is the set of all possible paths for OD pair k. However, in practice, it

requires only few iterations to converge to the exact θ∗ since the size of OD is nonincreas-

ing. We observe that it is faster than the binary search method because the binary search

method is doing blind search and converges slowly near the end of the procedure. For the

primal-dual method, we need to compute θ∗ exactly so that the dual objective is strictly

ascending. Numerical precision problems in the binary search method create difficulties in

making improvements due to zero step length.

Both of our proposed methods for computing θ∗ require many iterations of MPSP com-

putation. Thus, an efficient MPSP algorithm will greatly improve the practical running

time. There may exist other methods more efficient than our iterative method for comput-

ing the step length θ∗. We think this is an interesting topic for future research.

6.1.4 Degeneracy issues in solving the RPP

At each iteration, after identifying the step length θ∗ a new, improved feasible dual solution

(σ′,−π′) = (σ,−π) + θ∗(γ∗,−ρ∗) can be computed and used to construct a new RPP with

only the zero-reduced-cost columns.

The RPP can be solved by any LP method. In our implementation, we use CPLEX

7.0 to solve the RPP. CPLEX has its own techniques to resolve degeneracy. However, our

experiments show that sometimes degeneracy between different iterations of RPP may slow

down the primal-dual methods even when CPLEX’s techniques are used.

163

Suppose Z∗
RPt

is the optimal objective for the tth RPP (the RPP in the tth primal-dual

iteration). Since the primal infeasibility stays strictly positive until the last primal-dual

iteration, the original dual objective will be strictly improving at each iteration. The total

primal infeasibility Z∗
RPt

should remain nonincreasing. That is, Z∗
RPt+1

≤ Z∗
RPt
. Equality

holds whenever a primal degenerate pivot occurs between iteration t and iteration t+ 1.

Suppose we add columns to the RPP to construct a larger problem PPA. That is,

problem PPA contains three sets of columns: (1) artificial columns with unit objective

coefficients, (2) all shortest paths with zero objective coefficients for each commodity, and

(3) all other paths which are not the shortest, but also have zero objective coefficients for

each commodity. The original RPP can be thought as a ”restricted master” problem of

PPA that uses only the first two groups of columns. A feasible basis and a basic feasible

solution (b.f.s.) for RPP will also be a feasible basis and b.f.s. for PPA. Therefore, when

Z∗
RPt+1

= Z∗
RPt
, moving from iteration t to iteration t+1 in the primal-dual method can be

thought as a degenerate pivot for the larger problem PPA.

CPLEX does not avoid such degenerate pivots between primal-dual iterations since the

new RPP is constructed from scratch and CPLEX solves the new RPP from scratch as

well. Whatever degeneracy-resolving techniques CPLEX applies for solving the previous

RPP do not carry over when solving the new RPP. In our experiments, we do experience

such degeneracy. To illustrate the extent of the affect of degeneracy, we note a case in which

the primal infeasibility remains unchanged for approximately 1000 iterations, causing the

method to take several hours to terminate.

To avoid these degenerate pivots, we perturb the objective coefficients of the artificial

variables. In particular, instead of using 1 as the objective coefficient for all artificial vari-

ables (as suggested in most textbooks), we assign random integers to be the new objective

coefficients for artificial variables. This change will not affect the validity of the primal-dual

method. The optimal dual solution for the new RPP will be different from the original

one, but will still be a valid dual improving direction. All the other operations such as

computing the step length θ∗ and constructing the new RPP will still work. The algorithm

will terminate since each primal-dual iteration strictly improves the primal infeasibility and

164

the dual objective value, and dual feasibility and complementary slackness conditions are

still maintained throughout the whole procedure.

In our implementation, we check whether the primal infeasibility decreases between

primal-dual iterations. If it remains unchanged for two iterations, then we perturb the

objective coefficients of artificial variables once. This change does resolve the degenerate

pivots and shortens the computational time. For example, the previous case, which requires

several hours to perform 1000 degenerate pivots, solves in several seconds.

In next section, we describe a new method for solving the RPP which may be efficient

for cases with many commodities.

6.2 Primal-dual key path method

As introduced in Section 2.3.3, the key variable decomposition method, first proposed by

Rosen [273], has been used by Barnhart et al. [36] in conjunction with column generation

with success.

Barnhart et al. [36] use key variable decomposition with primal simplex column gener-

ation. In this section, we apply a similar technique to solve the RPP from the primal-dual

method. In particular, the primal-dual key path method follows the generic primal-dual

steps (see Figure 10), except that it uses the key variable decomposition method to solve

the RPP. Thus in this section we focus on solving the RPP by key variable decomposition.

6.2.1 Cycle and Relax(i) RPP formulations

Given a feasible dual solution (σ,−π), we can construct P RPP, the path formulation of

the RPP (see page 156). For each commodity k, we choose a shortest path key(k) ∈ Qk,

where Qk := {p : PCc+π
p = σk, p ∈ P k}. After performing column operations to eliminate

165

the key columns, we obtain the following key cycle formulation of the RPP:

min
∑

a∈A

(w+
a + w−

a) = Z∗
CRP (f, s, w) (C RPP)

s.t.
∑

p∈Qk

fp = 1 ∀k ∈ K (6.5)

∑

k∈K

∑

p∈Qk

Bk(δpa − δkey(k)a)fp + sa + (w
+
a − w−

a) = ua −
∑

k∈K

Bkδkey(k,i)a ∀a ∈ A0 (6.6)

∑

k∈K

∑

p∈Qk

Bk(δpa − δkey(k)a)fp + (w+
a − w−

a) = ua −
∑

k∈K

Bkδkey(k,i)a ∀a ∈ A+ (6.7)

fp ≥ 0 ∀p ∈ Qk, ∀k ∈ K

sa ≥ 0 ∀a ∈ A0 ; w+
a ≥ 0, w

−
a ≥ 0 ∀a ∈ A

Note that C RPP has the same objective function as P RPP since all the shortest path

columns have zero objective coefficients. C RPP should be no easier or harder than P RPP

since the transformation does not change the problem structure.

When the number of commodities (OD pairs) is huge, both C RPP and P RPP will have

many constraints, which makes the RPP more difficult. The key variable transformation

relaxes the nonnegativity constraints for each key path (i.e., it allows fkey(k) to be negative)

and results in an easier problem R RPP(i), where i denotes the index of iteration:

min
∑

a∈A

(wi+
a + wi−

a) = Z∗
RRP (i)(f, s, w) (R RPP(i))

s.t.
∑

k∈K

∑

p∈Qk

Bk(δpa − δkey(k,i)a)f ip + sia + (w
i+
a − wi−

a) = ua −
∑

k∈K

Bkδkey(k,i)a ∀a ∈ A0

(6.8)

∑

k∈K

∑

p∈Qk

Bk(δpa − δkey(k,i)a)f ip + (wi+
a − wi−

a) = ua −
∑

k∈K

Bkδkey(k,i)a ∀a ∈ A+

(6.9)

f ip ≥ 0 ∀p ∈ Qk \ f ikey(k,i), ∀k ∈ K; f ikey(k,i) :free ∀k ∈ K

sia ≥ 0 ∀a ∈ A0 ; wi+
a ≥ 0, wi−

a ≥ 0 ∀a ∈ A

166

whose dual is

max
∑

a∈A

(ua −
∑

k∈K

Bkδkey(k,i)a)(−ρia) = Z∗
RRD(i)(ρ) (R RDP(i))

s.t.
∑

a∈A

Bk(δpa − δkey(k,i)a)(−ρia) ≤ 0 ∀p ∈ Qk, ∀k ∈ K (6.10)

0 ≤ ρia ≤ 1 ∀a ∈ A0

−1 ≤ ρia ≤ 1 ∀a ∈ A+

6.2.2 Key variable decomposition method for solving the RPP

The RPP can be solved by iteratively application of the key variable decomposition method

as illustrated in Figure 12. In each iteration of the key variable decomposition method, an

easier problem, R RPP(i), is solved to optimality.

No

Solve R RPP(i), compute f i∗key(k) = 1−
∑

p∈Qk\key(k)

f i∗p ∀k ∈ K

f i∗key(k) ≥ 0 ∀k ∈ K

Given a RPP, i = 1

STOP

i := i + 1

Select key path key(k) ∀k ∈ K

Construct R RPP(i)

Yes

Figure 12: Key variable decomposition method for solving the RPP

After solving R RPP(i), the algorithm will check the sign of key variables by calculating

f i∗
key(k,i) = 1 −

∑

p∈Qk\key(k,i)

f i∗p . For those key variables with negative signs, the algorithm

will perform a key variable change operation to replace the current key variable with a

167

new one. Among all positive shortest path variables eligible for selection, the one with the

largest value is usually chosen; intuitively, that path is more likely to have positive flow in

the optimal solution. That is, key(k, i+ 1) = arg max
q∈Qk

f i∗q .

The proof of finiteness and optimality for the key variable decomposition method can be

found in Barnhart et al. [36]. In particular, after solving the R RPP(i), if there exists some

key variable f i∗
key(k,i) < 0, there must also exist a shortest path q(k) such that f

i∗
q(k) > 0, and

column q(k) is in the optimal basis. The optimal dual solution of RPP(i), −ρi∗, remains as a

basic feasible solution for R RDP(i+1). The swap of key path from key(k, i) to q(k) does not

affect using −ρi∗ as an initial basic feasible solution for R RDP(i+1). Furthermore, Z∗
RRD(i)

= ZRRD(i+1), and the complementary slackness conditions are maintained after the swap

of the key path. Since f i+1
key(k,i) < 0, a dual simplex pivot has to be performed to achieve

optimality for R RPP(i + 1). Using the dual simplex method with degeneracy resolving

techniques, the dual objective is strictly improved in next iteration, and the algorithm will

terminate in a finite number of iterations. If the key variable decomposition method takes

î iterations to solve the RPP, then Z∗
RRP (̂i)

= Z∗
RP .

After the RPP is solved, we use the same procedure as introduced in Section 6.1.3 to

identify the step length θ∗. Then, we can update π′ = π + θ∗ρ∗, compute σ∗k = PCc+π′

sp(k)

where sp(k) is the shortest path of commodity k using c+ π′ as the arc lengths, and finally

construct a new RPP for next primal-dual iteration.

This algorithm maintains dual feasibility and complementary slackness conditions while

trying to achieve primal feasibility (which will be attained when all key variables become

nonnegative).

6.2.3 Degeneracy issues between key path swapping iterations

The finiteness of the key variable decomposition method for solving the relaxed problem

R RPP(i) relies on the assumption of techniques to resolve degeneracy. Degeneracy is not

an issue when we solve the R RPP(i), but it will become a crucial factor between iterations

of solving the R RPP(i).

Suppose we are to solve the ODMCNF problem shown in Figure 13, which requires us

168

ji
1 2 3 4

(2,3)

(1,3) (1,4) (2,1)

fp1
+ fp2

= 1

(cij , uij) cij : cost of arc (i, j)

uij : capacity of arc (i, j)

(3, 4) 4

(2, 3) 3

(1, 3) 2

(1, 3) 1

arc (i, j) index

p1 : 1 → 2 → 3 → 4
p2 : 1 → 3 → 4

Q1 :

K1: (s1, t1) = (1, 4), B1 = 2

initial πa = 0 ∀a ∈ A

both f∗p1
, f∗p2

∈ [0, 1.5], but f∗p1
+ f∗p2

= 1

w−∗
a = 0, a = 1, 2, 3

w+∗
a = 0, a = 1, 2, 3, 4

w−∗

4 = 1

Optimal solution:

min
4
∑

a=1

w+
a +

4
∑

a=1

w−
a (RPP)

2fp1
+ s1 + w+

1 − w−

1 = 3

2fp2
+ s2 + w+

2 − w−

2 = 3

2fp1
+ s3 + w+

3 − w−

3 = 4

2fp1
+ 2fp2

+ s4 + w+
4 − w−

4 = 1

subject to

fp ≥ 0 ∀p ∈ Q1; sa ≥ 0, w+
a , w

−
a : free ∀a ∈ A

Figure 13: A small ODMCNF example and its RPP formulation

to send 2 units of flow from node 1 to node 4. Using −π = 0 as an initial dual feasible

solution, the restricted network consists of 4 arcs, (1, 2), (1, 3), (2, 3), and (3, 4), because

there are only 2 paths (1 → 2 → 3 → 4 and 1 → 3 → 4) that have zero reduced cost.

Note that there should exist other paths from node 1 to node 4 using other arcs; otherwise

the problem is primal infeasible. It is easy to see that the optimal solution of this RPP is

w+∗
4 = 1, w+∗

a = 0 for a = 1, 2, 3; w−∗
a = 0 for a = 1, 2, 3, 4; and f 1∗

p1
∈ [0, 1.5], f1∗

p2 ∈ [0, 1.5],

with f1∗
p1
+ f1∗

p2
= 1. That is, there exist infinitely many f 1∗

p1
and f1∗

p2
. The exact value of f1∗

p1

and f1∗
p2
will not affect the objective function.

Figure 14 illustrates the steps of the key variable decomposition method for solving

this example. Suppose we choose p1 to be the key path in the first iteration when solving

R RPP(1). There exist multiple optimal primal solutions to R RPP(1); that is, 0 ≤ f 1∗
p2
≤

1.5. If we specify f1∗
p2
to be any value in [0, 1], then f 1∗

p1
= 1− f1∗

p2
will be feasible. However,

if we choose 1 < f1∗
p2
≤ 1.5, then −0.5 ≤ f1∗

p1
< 0 is not primal feasible for RPP, and we

169

−2f1
p2

+ s1 + w+
1 − w−

1 = 1

−2f1
p2

+ s3 + w+
3 − w−

3 = 2

s4 + w+
4 − w−

4 = 1

subject to

f1
p1

:free, f1
p2
≥ 0; sa, w

+
a , w

−
a : free ∀a ∈ A

2f1
p2

+ s2 + w+
2 − w−

2 = 3

p1 : 1 → 2 → 3 → 4 : key(1, 1)
p2 : 1 → 3 → 4

Q1 :

p2 : 1 → 3 → 4 : key(1, 2)
Q1 : p1 : 1 → 2 → 3 → 4

s4 + w+
4 − w−

4 = −1

subject to

f2
p2

:free, f2
p1
≥ 0; sa, w

+
a , w

−
a : free ∀a ∈ A

2f2
p1

+ s3 + w+
3 − w−

3 = 4

−2f2
p1

+ s2 + w+
2 − w−

2 = 1

2f2
p1

+ s2 + w+
1 − w−

1 = 3

min
4
∑

a=1

w+
a +

4
∑

a=1

w−
a (R RPP(2))

w−∗
a = 0, a = 1, 2, 3

w+∗
a = 0, a = 1, 2, 3, 4

w−∗

4 = 1, f2∗
p1
∈ [0, 1.5]

Optimal solution:

f2∗
p2
∈ [−0.5, 1]

If the solver gives f2∗
p1

= 1.5, then f2∗
p1

= −0.5 < 0,

CPLEX gives f2∗
p1

= 0, thus f2∗
p2

= 1 > 0, STOP

Therefore, we have to swap key(1, 3) = p1 again.

CPLEX gives f1∗
p2

= 1.5, thus f1∗
p1

= −0.5 < 0

w−∗
a = 0, a = 1, 2, 3

w+∗
a = 0, a = 1, 2, 3, 4

w−∗

4 = 1, f1∗
p2
∈ [0, 1.5]

Optimal solution:

f1∗
p1
∈ [−0.5, 1]

Therefore, we have to swap key(1, 2) = p2

min
4
∑

a=1

w+
a +

4
∑

a=1

w−
a (R RPP(1))

Figure 14: Infinite iterations of key path swapping due to dual degeneracy

have to swap key paths.

Unfortunately, CPLEX (with default settings) will give f 1∗
p2
= 1.5, and thus we have to

set the key path for the second iteration, key(1, 2), to be path p2 and construct R RPP(2).

Again, R RPP(2) has multiple optimal primal solutions 0 ≤ f 2∗
p1
≤ 1.5, and thus the

situation is exactly the same as the first iteration. Fortunately, CPLEX with default settings

will give us f2∗
p1
= 0. However, there is no guarantee that CPLEX or any other solver will

have good luck all the time. If the solver happens to choose 1 < f 2∗
p1
≤ 1.5 as its optimal

solution, then −0.5 ≤ f 2∗
p2

< 0 is not primal feasible for RPP, and we have to swap the

key path back to p1. For CPLEX, since it will only choose the one that are basic feasible,

so f2∗
p2
= 0 or f2∗

p2
= 1.5, a 50% chance to terminate earlier. In other words, since the LP

170

solver does not distinguish between multiple optimal solutions, it is possible that a ”bad”

optimal solution will be chosen, resulting in infinite loops of key path swapping. Indeed, in

our computational experiments, this happens very frequently because the RPP is very dual

degenerate.

Using 1 as an upperbound for each path flow f ip may avoid some cycling, since such

upperbound forces each non-key-path flow less than 1 which in turn makes the sum of their

flows smaller, and thus more likely to make the flow on key path nonnegative. However,

it comes with the difficulty that we will have extra dual variables for these upper bound

constraints. Bookkeeping for these extra dual variables, one for each path, may be difficult

since there may be many of them and for each we require a record of its associated path.

Furthermore, it is still possible that each f ip < 1 but their sum exceeds 1. Thus, cycling

may still occur.

Because the objective function in RPP and R RPP(i) contains only artificial variables

with no other restriction on the path flows, the LP solver may give the optimal path

flow ”blindly” even if there does exist a better optimal flow solution. Here, we propose a

perturbation method that assigns a very small random positive objective coefficient for all

path variables. This idea is inspired by observing the example in Figure 14. In particular,

after we relax the nonnegativity constraints for the key variables, we will prefer the optimal

path flow solution to be as small as possible so that the convexity constraints will be more

likely to make the key variable positive.

Therefore, instead of assigning a zero objective coefficient for each path flows, we give a

very small positive random cost coefficient for each path flow. Thus, the optimal flow solu-

tion will tend to be smaller and key path flows will be more likely to be nonnegative. Note

that such a change will affect dual feasibility of the R RDP(i), the dual of the R RPP(i).

Thus we have to add an extra loop to compensate for the effect of the perturbation.

In particular, the optimal dual solution of R RPP(i), −ρ∗, will be in the set {−1, 0, 1}.

After the perturbation, −ρ∗ may become −1 ± ε, ±ε, or 1 ± ε, where ε is a very small

number. Thus we reset each deviated −ρ∗a to be its nearest integer, −1, 0, or 1, so that the

affect of perturbation to −ρ∗ is compensated and corrected.

171

Table 30: Four methods for solving ODMCNF

Algorithm Problem formulation Solution method

PD arc-path P RPP formulation (see page 156) generic primal-dual method
KEY arc-path R RPP(i) formulation (see page 166) primal-dual key path method
DW arc-path P PATH formulation (see page 21) Dantzig-Wolfe decomposition
NA node-arc formulation (see page 13) CPLEX

Table 31: Problem characteristics for 17 randomly generated test problems

Problem |N | |A| |K| |N | |K| + |A| |M | |K|

P1 200 517 323 65,117 166,991
P2 200 501 323 65,117 161,823
P3 200 508 323 65,117 164,084
P4 200 520 317 63,917 164,840
P5 300 760 561 168,817 426,360
P6 300 811 530 159,517 429,830

P7, . . . ,P17 49 130 427 21,440 55,510

6.3 Computational results

We implemented four algorithms for solving the multicommodity flow problems. Each

algorithm solves a different multicommodity flow formulation (see Table 30). All of our

tests were run using CPLEX 7.0 on a Sun Sparc machine with 512MB RAM. We tested 17

problem sets obtained from Hane [165] (see Table 31). P1,. . . ,P6 are directed graphs with

different topologies and commodities, and P7,. . . ,P17 are undirected graphs with different

commodities but the same topology. All of these 17 problems use OD pairs as commodities,

but the commodity costs are uniform on each arc. That is, cka = ca, for each arc a in A

and each commodity k in K. Our MPSP algorithm DLU2 are used for computing shortest

paths in MCNF algorithms PD, KEY, and DW.

6.3.1 Algorithmic running time comparison

Table 32 lists the overall running time of each algorithm on each problem, as well as percent-

age of time spent by different procedures. In particular, tall denotes the total running time.

We divide the running time of algorithm PD into three components: tsp, tθ and t, where tsp

represents the time spent on generating all shortest paths for constructing the RPP, tθ is

the time spent on computing the step length θ∗, and t is the remaining time mostly spent

172

Table 32: Total time (ms) of four algorithms on problems P7,. . . , P17

PD KEY DW NA

tsp% tθ% t% tall tsp% tθ% tkey% t% tall tsp% t% tall tall

P1 54% 28% 18% 291 43% 22% 26% 9% 366 31% 69% 57 5532

P2 39% 46% 15% 1444 19% 22% 56% 3% 2584 31% 69% 65 5934

P3 42% 44% 15% 987 24% 25% 48% 4% 1713 29% 71% 58 5611

P4 42% 42% 16% 699 22% 22% 53% 4% 1334 27% 73% 62 5479

P5 50% 34% 16% 2276 12% 9% 78% 1% 9769 28% 72% 124 34753

P6 44% 46% 10% 3214 25% 26% 46% 3% 5630 36% 64% 144 30460

P7 67% 20% 13% 65 70% 22% 3% 5% 59 57% 43% 13 363

P8 61% 26% 12% 102 66% 28% 4% 3% 97 51% 49% 15 369

P9 59% 29% 11% 1075 60% 30% 8% 2% 1038 43% 57% 27 592

P10 59% 29% 12% 1416 58% 29% 12% 2% 1397 40% 60% 27 812

P11 61% 28% 12% 209 64% 30% 4% 2% 195 51% 49% 18 416

P12 61% 28% 11% 311 65% 30% 4% 2% 292 52% 48% 20 437

P13 60% 29% 11% 384 64% 30% 4% 2% 359 56% 44% 19 426

P14 60% 29% 11% 451 63% 30% 5% 2% 434 56% 44% 22 465

P15 61% 28% 11% 533 64% 29% 5% 2% 517 52% 48% 17 445

P16 61% 28% 11% 697 63% 29% 7% 2% 653 54% 46% 20 504

P17 60% 29% 11% 805 62% 29% 8% 2% 780 45% 55% 23 518

on CPLEX operations. The total running time of algorithm KEY can be divided into four

parts: tsp, tθ, tkey and t. Three of them, tsp, tθ and t, are as described before. tkey is the

time spent for key path swapping and for CPLEX to solve the relaxed RPP. Algorithm DW

spent tsp in computing shortest paths for generating columns with negative reduced cost.

Algorithm NA simply uses CPLEX to directly solve the problem in node-arc form.

In all of the tests, DW is the fastest algorithm. For larger cases P1,. . . ,P6, NA is the

slowest algorithm and usually is many times slower than the other algorithms. PD is the

second fast algorithm. KEY usually spends no more than twice the time of PD, with the

exception of problem P5.

For smaller cases P7,. . . ,P17, KEY performs slightly better than PD. It is difficult to

conclude whether KEY is faster than NA or not from our limited tests. However, it is ob-

served that the performance of NA seems to be consistent when the topology and number of

commodities are fixed. For example, we may roughly classify the 17 problems into 3 groups:

P1,. . . ,P4, P5 and P6, and P7,. . . ,P17, by their number of nodes, arcs and commodities. We

observe that NA performs similarly for problems in the same group. KEY and PD, on the

other hand, seem to be more sensitive to what the commodities are, instead of how many

commodities there are, and may perform drastically differently even on the same network

with the same number of commodities.

173

Table 33: Comparisons on number of iterations for PD, KEY and DW

PD KEY DW

number of number of number of number of

iterations iterations key changes iterations

P1 8 8 100 7
P2 29 25 1770 7
P3 21 21 973 6
P4 15 15 797 7
P5 21 21 3102 6
P6 24 24 1788 6
P7 4 4 0 4
P8 6 6 4 5
P9 61 60 142 7
P10 79 77 391 6
P11 12 12 5 5
P12 18 18 5 6
P13 22 22 11 6
P14 26 26 26 7
P15 31 31 29 5
P16 40 39 71 6
P17 46 46 122 6

6.3.1.1 Generic primal-dual method (PD) vs. key path decomposition method (KEY)

In this section we take a closer look at algorithms PD and KEY. KEY and PD should have a

similar number of primal-dual iterations since they only differ in using different techniques

to solving the RPP, where KEY uses the key path decomposition method and PD uses

CPLEX. Table 33 compares the number of iterations. The results show that both PD and

KEY do take almost same number of primal-dual iterations. They are not identical since

there exist multiple optimal dual solutions (i.e., feasible dual improving directions) for the

RPP.

The reason KEY performs much worse than PD for problems P1,. . . ,P6 is that there

are many iterations of key path swapping when solving the relaxed RPP. Table 32 shows

that tkey, the time spent on swapping key paths and solving the relaxed RPP, is usually

the most time-consuming component in KEY. This fact can also be confirmed by observing

that both PD and KEY have about the same amount of tsp and tθ. In other words, the

key path decomposition method that iteratively solves smaller relaxed LPs seems to be less

efficient than the ordinary LP methods that solve a larger and more difficult LP, at least

for the larger cases we have tested.

174

However, this does not mean that KEY is always less efficient than PD. Indeed, for

example, in all problems P7,. . . ,P17, KEY performs slightly better than PD. In particular,

the key path decomposition method is designed to be more efficient for problems with a large

number of OD commodities so that the time saved by solving the relaxed RPP will outweigh

the time spent in swapping key paths. Problems P7,. . . ,P17 have more commodities than

problems P1,. . . ,P6. Thus, it is not surprising that algorithm KEY is more efficient in

solving problems P7,. . . ,P17, than algorithm PD.

To improve the relative efficiency of algorithm KEY, techniques to shorten tkey are

required. In this thesis, we have proposed the method of adding positive perturbations on

the objective coefficients of the path flows in the relaxed RPP to avoid degenerate pivots

and cycling problems, but more work is necessary.

6.3.1.2 Generating shortest paths for Dantzig-Wolfe decomposition

Because DW performs so efficient, in all of our tests, we try to find out the best of four

implementations of DW: DWOO, DWOA, DWAO and DWAA: DWOO generates only a

single shortest path for each commodity in all iterations; DWOA generates only a single

shortest path for each commodity in the initial iteration, but then generates all shortest

paths for each commodity in every other iterations; DWAO generates all shortest paths for

each commodity in the initial iteration, but then generates a single shortest path for each

commodity in the latter iterations; and DWAA generates all shortest paths in all iterations.

The goal here is to see whether generating all shortest paths for each commodity in some

iterations will shorten the total running time. In other words, we try to see how many good

columns should be generated to shorten the overall running time in the column generation

scheme of DW. Intuitively, if we can generate many good columns earlier, we may achieve

optimality earlier. However, generating all of the columns with negative reduced cost (i.e.,

all shortest paths, in our case) can be time consuming. Compromises in the number of

columns generated (i.e., generating at most a specific number of columns) might be worth

investigating.

Note that in our DW implementation, we initially add |N |+ |K| artificial variables with

175

Table 34: Total time (ms) of four DW implementations

DWOO DWOA DWAO DWAA

P1 57 92 63 96
P2 65 104 79 122
P3 58 102 73 107
P4 62 114 80 136
P5 124 294 155 308
P6 144 277 208 325
P7 13 21 22 30
P8 15 28 25 36
P9 27 47 35 55
P10 27 48 33 56
P11 18 28 24 36
P12 20 34 27 40
P13 19 33 28 43
P14 22 39 32 48
P15 17 28 25 38
P16 20 35 29 44
P17 23 39 31 48

large cost so that initial basic feasible solutions can be easily identified by CPLEX.

Table 34 compares running time for four different DW implementations. It shows that

DWOO, the implementation that only generates single shortest path for each commodity

in all iterations, is the most efficient one, DWAO is the second fastest, DWOA is third, and

DWAA is the slowest implementation, taking more than twice the time of DWOO. Because

of the results, we use DWOO for the comparisons in Table 32 and 33.

Table 34 shows that, at least for our limited tests, generating all shortest paths is not

a good idea. Generating all shortest paths may reduce the number of total iterations,

but DWOO requires fewer than 10 iterations for all test problems (as shown in Table 33).

Generating all shortest paths may indeed be a time-consuming operation. This may also

explain why the other methods, PD and KEY, which requires all shortest paths, may be

less efficient.

6.3.2 Impact of good shortest path algorithms

Three of the algorithms, especially PD and KEY, require extensive computations of shortest

paths. Thus, an efficient shortest path algorithm is crucial for practical efficiency.

In particular, both PD and KEY generate all shortest paths to construct the RPP (this

176

takes time tsp). Also, they need to solve many iterations of MPSP to determine the step

length θ∗ (this takes time tθ). Table 33 shows that PD spends approximately 85% of its

total running time doing shortest path computations. KEY spends about the same amount

of time as PD in shortest path computations. DW spends approximately 30% to 50% of its

time computing shortest paths.

There are at least two ways to shorten the time spent on shortest path computations

in PD and KEY: one is to find a better dual improving direction so that the total number

of primal-dual iterations can be reduced, and the other is to design more-efficient shortest

path algorithms.

All of the shortest path problems encountered in these algorithms are, in fact, MPSP

problems. In particular, each commodity corresponds to an OD pair, and shortest paths

between several OD pairs are repeatedly computed either to test whether they are dual

infeasible (when determining θ∗) or to generate all shortest paths for each requested OD

pair (when constructing the RPP). These MPSP problems share the same topology. All of

these issues point to opportunities in the design of efficient MPSP algorithms for problems

with fixed topology, which is the topic we have discussed in Chapter 2, Chapter 3, and

Chapter 4 of this thesis.

6.4 Summary

In this chapter we first discussed generic primal-dual methods (PD) for solving origin-

destination multicommodity network flow (ODMCNF) problems. We proposed two methods

to determine the step length θ∗ and choose the latter one for our implementation. We

perturbed the objective coefficients of the artificial variables to resolve the degenerate pivots

caused by primal degeneracy.

We then proposed a new method, the primal-dual key path method (KEY), to solve

ODMCNF problems. We discussed its properties and difficulties, and proposed techniques

to resolve cycling problems caused by dual degeneracy.

We compared our algorithm KEY with other three algorithms, PD, DW, and NA. We

found DW, the Dantzig-Wolfe decomposition method, was the fastest algorithm in all of our

177

tests. As expected, solving the node-arc formulation (NA) without any special techniques

such as resource-directive methods or the basis-partitioning methods introduced in Chapter

2, will be time-consuming and very inefficient, except for small networks.

KEY follows the generic PD steps but uses the key path decomposition method to

solve a relaxed RPP at each iteration. It is designed for problems with large number of

commodities. In our limited tests, KEY does perform better than PD for cases with more

commodities. However, for larger cases with few commodities, it performs much worse than

PD. The reason for its inefficiency is that it requires many iterations of key path swapping

operations. Although our proposed technique, which perturbs the objective coefficients for

path flows, has reduced the chances of key path swapping and resolved the cycling problem

caused by dual degeneracy, it is still not efficient enough for some larger cases.

More tests should be performed, especially using cases with a large number of commodi-

ties, to draw more solid conclusions on the efficiency of KEY.

We also found that generating all shortest paths for the same commodity may not save

time in Dantzig-Wolfe decomposition with a column generation scheme. That is, generating

a single shortest path for each commodity is good enough.

To explain why DW performs so well compared to PD and KEY, we give the following

reasons:

First, DW generates fewer shortest paths than DW and KEY. In particular, DW will

not generate a path twice, if we keep all of the previously generated paths in the restricted

master problem. PD and KEY, on the other hand, generate a new set of all shortest paths at

every iteration using the new dual solutions. Note that between two primal-dual iterations,

many paths may remain the shortest and do not need to be altered. The reason that we

remove the entire previous set of shortest paths and add a new set of shortest paths is that

keeping old paths would require bookkeeping on each specific path, which is difficult and

inefficient. In particular, to check whether a path is in the current set takes exponential

time when there are (exponentially) many paths to be added or removed. Furthermore,

using CPLEX to solve the RPP usually requires the sparse representation of the constraint

matrix. In this case, each path corresponds to a column. Removing and adding columns

178

will require a new sparse representation. Although we can add easily columns at the end

of the matrix, identifying the columns to be removed requires sparse matrix operations.

Thus, PD and KEY invoke many more operations than DW does, making the algorithms

less efficient.

Degeneracy is an important issue, especially for primal-dual based methods like PD

and KEY. Multiple optimal dual or primal solutions may cause implementation problems.

Techniques that choose a ”good” optimal solution are desired, and may drastically shorten

the total running time.

KEY has one more issue of concern than PD: the memory requirement. To implement

the key path swapping operations more efficiently, we allocate memory to store the initial

relaxed RPP at each primal-dual iteration. Inside a primal-dual iteration, KEY may per-

form many iterations of key path swapping. The column corresponding to the key path is

empty, and an empty column has no sparse representation at all. Thus, it is clumsy to do

the key path swapping and column operations only using the original sparse representation

of the RPP. Although we have an efficient way to swap key paths and update each column

for the commodities that have new key paths, it still requires much time, especially when

there are many iterations of key path swapping operations. Table 33 and Table 34 show

that more iterations of swapping key paths results in a longer running time compared to

PD.

To make KEY more competitive, new techniques that identify better dual improving

directions can be developed. Our results show that efficient MPSP algorithms play a crucial

role in improving all of the path-oriented multicommodity network flow algorithms, espe-

cially primal-dual based algorithms like PD and KEY which 85% (PD) or 95% (KEY) of

their total running time computing shortest paths.

179

