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Because of shrinking budgets, transportation agencies are facing severe challenges in the preservation of
deteriorating pavements. There is an urgent need to develop a methodology that minimizes maintenance
and rehabilitation (M&R) cost. To minimize total network M&R cost of clustering pavement segments, we
propose an integer programming model similar to an uncapacitated facility location problem (UFLP) that
clusters pavement segments contiguously. Based on the properties of contiguous clustered pavement
segments, we have transformed the clustering problem into an equivalent network flow problem in
which each possible clustering corresponds to a path in the proposed acyclic network model. Our pro-
posed shortest-path algorithm gives an optimal clustering of segments that can be calculated in a time
polynomial to the number of segments. Computational experiments indicate our proposed network
model and algorithm can efficiently deal with real-world spatial clustering problems.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Transportation agencies, such as the Georgia Department of
Transportation (GDOT) in the USA, are facing the challenge of pre-
serving deteriorating pavements with a shrinking budget. GDOT is
responsible for maintaining 18,000-mile interstate and state
highway system by contracting out projects based on different
pavement conditions that require different Maintenance and Reha-
bilitation (M&R) methods. M&R methods and treatment methods
are used interchangeably in this paper.

Each pavement M&R project (‘‘project’’) consists of a group of
contiguous road segments; a segment is typically one mile or less
and has had a pavement condition survey revealing the pavement
distress type, severity, and extent. This survey is performed annu-
ally at the segment level using a 100-ft sample section that is used
to represent the overall pavement condition. Ten distress types, rut-
ting, load cracking, block cracking, reflection cracking, patches/pot-
holes, ravelling, edge distress, bleeding/flushing, corrugations/
pushing, and loss of section, are measured. Note that even if several
types of distresses may appear in one segment, a single measure
(see Álvarez, López-Rodríguez, Canito, Moral, & Camacho, 2007)
on the distress condition for the entire segment will be used.

Based on the distress condition of a segment, a proper M&R
method is determined, and contiguous segments are clustered into
a pavement M&R project. Ideally, segments are clustered by the
ll rights reserved.
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same pavement condition that requires the same M&R method.
Unfortunately, adjacent pavement segments can deteriorate at dif-
ferent rates, exhibit different distresses, and, consequently, require
different treatment methods. Currently, the best treatment method
(e.g. the one with the highest treatment unit cost) will be applied
to all segments in a pavement preservation project (i.e. a cluster).
The challenge is to cluster segments needing the same treatment
into cost effective pavement M&R projects. We call this a segment
clustering problem (SCP). Finding the most cost-effective segment
clustering helps transportation agencies preserve more roads with
a limited budget.

Fig. 1a illustrates the example of an SCP in which eight seg-
ments having different treatment costs, numbered from 1 to 8
from left to right, are to be clustered. Fig. 1b shows segments 1
and 2, 3 to 6, and 7 and 8, are clustered into three projects;
Fig. 1c illustrates an alternative SCP. Currently, the best treatment
method (i.e. the most expensive) is applied to all segments in a
cluster. For example, when segments 1 and 2 are clustered, the
most expensive treatment (i.e. the treatment on segment 2) will
be applied on both segments. This will result in a higher total
M&R cost as shown in the shaded areas in Fig. 2b and c. The objec-
tive of SCP is, thus, to find the cluster combination that will mini-
mize M&R cost.

Mathematically, a k-cluster combination divides the m seg-
ments into k clusters, obtained by placing k � 1 separators over
the m � 1 internal segment boundaries. Thus, a k-cluster for m seg-
ments may have Cm�1

k�1 possible combinations, and there can bePm
k¼1Cm�1

k�1 ¼ 2m�1 cluster combinations for all possible values of k.
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Fig. 1. An example of cost distribution along segment location and its different segment grouping results.

Fig. 2. Two examples of SG and results by TOSC.
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In other words, the solution space of the SCP grows exponentially
with respect to the number of segments.

Most pavement optimization research has focused on determin-
ing the optimal treatment timing for all segments in a project with-
out considering their condition variation or corresponding spatial
relationship. Optimization techniques, including the mixed integer
programming (MIP) with branch-and-bound and greedy heuristic
algorithms (Ouyang & Madanat, 2004) and the analytical solution
(Ouyang & Madanat, 2006) have been proposed for solving the best
individual segment treatment schedule. In addition, linear pro-
gramming (Abaza, 2007; Golabi, Kulkarni, & Way, 1982; Grivas,
Ravirala, & Schultz, 1993) and integer programming methodologies
(Al-Subhi, Johnston, & Farid, 1990; Dahl & Minken, 2008; Fwa &
Chan, 2000; Jacobs, 1992) have also been used for determining
adequate treatment strategies at the network level.

Other than developing techniques that calculates an exact opti-
mal solution, a few researchers (Tsai, Yang, & Wang, 2006; Yang,
Tsai, & Wang, 2009) have explored spatial distribution of seg-
ments by a Fuzzy c-means method (FCM) to cluster segments
with minimal rating variation for determining the best pavement
treatment strategy. In their studies, the spatial clustering problem
was formulated to minimize the variation of the segment ratings
(a composite pavement condition indicator) in a pavement M&R
project (or a cluster) and, thus, indirectly minimize the treatment
cost for a whole project. Their proposed FCM first performs spatial
analysis to determine several workzones based on the hard and
soft barriers. For each workzone, FCM iteratively estimates the
possible range of cluster numbers for each workzone, performs
the unconstrained FCM clustering method, keeps adjusting those
segments from violating constraints until all constraints are
satisfied, calculates the objective value as the optimal result for
the current cluster number, increases the current cluster number
by 1 until the cluster number reaches a specified threshold, and
selects the cluster settings of the minimum objective value as
the best clustering for that workzone. These steps are repeated
for other workzones. Note that FCM gives no guarantee of its solu-
tion quality and running time, although it may work well in
practice.
This paper extends the previous works by directly using seg-
ment treatment cost to address the spatial clustering problem that
can minimize the network-wide total M&R cost. This paper is the
first to minimize the total network-level pavement M&R cost by
clustering pavement segments with similar condition into a
project.

In this paper, we follow the techniques of previous researchers
to formulate the clustering problem as a specialized, uncapacitated
facility location problem (UFLP), and we use additional ordering
constraints via integer-programming techniques. Our study shows
the same problem can be reduced to an equivalent network flow
problem in which each possible segment clustering corresponds
to a path in the proposed network model. In addition, this paper
presents SCP and proposes a topological-ordering based shortest-
path algorithm to solve SCP.

This paper is organized as follows: Section 2 introduces nota-
tions and a specialized UFLP formulation for modelling the cluster-
ing problem. In Section 3, we propose a network model to solve the
clustering problem. Several numerical experiments, using real-
world and simulated segment cost data, are conducted, and the re-
sults are analyzed and summarized in Section 4. Section 5 con-
cludes the paper and suggests future research.
2. A UFLP formulation

Suppose a road is divided by a set of m contiguous segments,
denoted by M, where each segment i = 1, . . ., m is associated with
an original treatment cost ci. Let contiguous segments be grouped
into a set of n clusters, denoted by N, where each cluster j = 1, . . ., n
has an initial set-up cost f that includes mobilization cost, commu-
nication with agency cost, and on-site office cost. The minimum
cost (or the lower bound) for a cluster is specified because of the
minimum cost for contracting and managing a project.

Let L be the cost of the lower bound for each cluster, usually
around $250 k USD. The clustering problem seeks a way to assign
each segment i to a cluster j that minimizes total cost. Let xij be a
binary decision variable to represent whether segment i is assigned
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to cluster j (i.e. xij = 1) or not (i.e. xij = 0). The final treatment cost zij

for each segment i in cluster j is, at least, ci. Note that all the seg-
ments of the same cluster must have the same final treatment cost
which is at least as large as the original treatment cost for any indi-
vidual segment in that cluster. In practice, each cluster should at
least be 2 miles (3.2KM) in length because it is not practical to con-
tract out a small project after expending a fair amount of adminis-
trative and project management efforts. Similarly, each cluster
should contain at least ml segments, where ml = 2 in practice. Let
n* denote the optimal number of clusters in our problem, which
means clusters with indices larger than n* have to be empty. Note
that a good initial n close to n* may effectively shorten the compu-
tational time. Nevertheless, since n* cannot be calculated before-
hand, we may set n ¼ dm=mle as an initial upper bound for the
number of clusters.

Let yj be a binary decision variable to indicate whether cluster j
is empty (i.e. yj = 0) or not (i.e. yj = 1). Therefore, the SCP can be for-
mulated as a 0, 1 mixed-integer linear programming problem
(MIP) as follows:

min
Xm

i¼1

Xn

j¼1

zij þ
Xn

j¼1

fyj ðSCPÞ

s:t:
Xn

j¼1

xij ¼ 1; 8i 2 M ð1Þ

xij 6 yj; 8i 2 M; j 2 N ð2Þ
Xm

i¼1

xij P mlyj; 8j 2 N ð3Þ

X
j06j

xij0 þ
X
j0>j

xi0 j0 6 1; 8i; i0 2 M; i0 < i; j 2 N ð4Þ

yj P yjþ1; 8j ¼ 1; . . . ; n� 1 ð5Þ

�xijQ 6 zij 6 xijQ ; 8i 2 M; j 2 N

Zj � ð1� xijÞQ 6 zij 6 Zj þ ð1� xijÞQ ; 8i 2 M; j 2 N

Zj � ci P ðxij � 1ÞQ ; 8i 2 M; j 2 N

9>=
>;

ð6Þ

Xm

i¼1

zij P Lyj; 8j 2 N ð7Þ

xij; yj 2 f0;1g; zij P 0; 8i 2 M; j 2 N ð8Þ

In particular, the objective function of SCP minimizes the sum of
the total treatment cost for all segments and the set-up cost for
all clusters. Constraints (1) ensure each segment is assigned to a
single cluster. Constraints (2) model whether a cluster j is non-
empty or not by whether it contains some segment i or not.
Although we can use aggregated constraints

Pm
i¼1xij 6 myj8j 2 N

to replace the disaggregated constraints (2), the aggregated formu-
lation usually causes more fractional LP relaxed solutions and
leads to more branch-and-bound iterations that slow down the
solution process. Therefore, we use the disaggregated constraints
here instead of the aggregated ones. Constraints (3) restrict the
minimum number of segments for a nonempty cluster to be at
least ml.

Constraints (4) are continuity constraints to restrict contiguous
assignments for segments to clusters. In other words, if both seg-
ments and clusters are aligned by their indices in ascending or-
ders, different assignments cannot cross over each other.
Similarly, constraints (5) indicate the index of the first empty
cluster should be larger than the index of the last nonempty
cluster.

By setting Q as a very large number, constraints (6) model the
final treatment cost zij for each segment i in cluster j based on
the following two observations: (i) if xij = 0, then zij = 0; and (ii) if
xij = 1, then zij = Zj P cj, where Zj is the final treatment cost for each
segment contained in cluster j. Note that these constraints may
also be replaced by zij P ci0xi0 j;8i; i0 2 M; j 2 N which seem more
concise but, in fact, take up to twice the time and storage space
in our computational tests. Constraints (7) force the total treat-
ment cost for a nonempty cluster j to be sufficiently large (i.e., at
least L).

SCP is an MIP with O(mn) decision variables and O(m2n) con-
straints. If we view a segment as a customer and a cluster as a plant
(or warehouse) location, then SCP becomes a specialized uncapac-
itated facility location problem (UFLP) that seeks a min-cost
assignment for each customer to an uncapacitated plant. The
objective function and constraints (1), (2), and (8) of SCP corre-
spond to the objective function and constraints of UFLP, respec-
tively. The treatment cost cij can be viewed as the transportation
cost from customer i to plant j, and fj is the fixed cost to build plant
j. Each plant to be built has to serve at least 2 customers with suf-
ficient investments by constraints (3) and (7). Moreover, each cus-
tomer served by the same plant has to consume the same final
transportation cost, which should be no less than its original trans-
portation cost, by constraints (6). Note that there is no upper
bound in the number of customers served by a plant; thus, a plant
is uncapacitated.

The UFLP has been extensively studied in operations research lit-
erature, such as clustering analysis by Mulvey and Crowder (1979),
economic lot sizing by Blide and Krarup (1977), machine schedul-
ing and information retrieval by Hansen and Kaufman (1972), port-
folio management by Beck and Mulvey (1982), and network design
by Mirzain (1985). Comprehensive UFLP surveys can be found in
Cornuejols, Nemhauser, and Wolsey (1990) and Krarup and Pruzan
(1983). UFLP is shown to be NP-hard (see Cornuejols et al. (1990),
for proof), and is usually solved by commercial optimization pack-
ages, such as CPLEX. Different heuristics, such as primal greedy
algorithms (Cornuejols, Fisher, & Nemhauser, 1977; Nemhauser,
Wolsey, & Fisher, 1987), dual descent algorithms (Bilde & Krarup,
1977; Erlenkotter, 1978), and tabu search algorithms (Sun, 2006)
have been proposed. Approximation algorithms (Barahona & Chu-
dak, 2000; Guha & Khuller, 1999; Shmoys, Tardos, & Aardal, 1997)
have also been proposed to solve the UFLP quicker. Although these
UFLP solution methods can all be applied to solve SCP with some
modifications, these approaches may not be efficient for SCP since
UFLP is NP-hard.

Note that the SCP constraints are mostly dominated by the con-
tinuity constraints (4) that try to remove those infeasible cross-
over segment assignments. Although the continuity constraints
seem to complicate the UFLP, they also reduce much of the feasible
solution space. In fact, this special property of contiguous segments
in a cluster is called string property, named by Vinod (1969) as fol-
lows: A partition {C1, C2,. . ., Cn} of points {1,2,. . .,m} is contiguous if
for any three points i1, i2, and i3 with 1 6 i1 < i2 < i3 6m and any
partition j = 1, . . ., n, i1, i3 e Cj, then i2 e Cj.

Fisher (1958) first showed that every partition that minimizes
the variances within groups has to be contiguous. Vinod (1969)
and Rao (1971) investigated and proposed mathematical pro-
gramming formulations for some one-dimensional clustering
problems with string properties. Jensen (1969) and Bellman
(1973) solved clustering problems by dynamic programming.
Hansen, Jaumard, and Simeone (2002) proposed a polynomial
time dynamic programming algorithm to solve nested univariate
clique clustering problems in which the string property may not
hold even for the one-dimensional case. Recently, Novick (2009)
introduced a new class of clustering problems in which the
string property is extensively discussed and generalized. He
points out that string property can reduce the solution space
and simplify procedures for determining optimal partitioning,
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although some clustering problems with string property are still
NP-hard.

All previous research has dealt with objectives that minimize
the sum of within-cluster interpoint distances, which is different
than our approach. In mathematical programming, the complex-
ity of problems may be largely affected by the objective function.
To the best of our knowledge, the objective function of SCP has
not been investigated in literature. The string property in litera-
ture is usually a result of optimal clustering for specific objective
functions. On the other hand, the string property of SCP is
enforced by the problem’s characteristics, such as conducting
pavement treatment. If we look at SCP from the 0,1 MIP point
of view, it is still an open question whether SCP is polynomial-
time solvable. In the next section, we will resolve this open ques-
tion by looking at SCP from a totally different viewpoint in which
we discard the complicated 0,1 MIP formulation, propose a new
network flow model for SCP that maps a feasible clustering to a
simple path, and then solve it by a polynomial-time, shortest-
path algorithm.
3. Proposed network model and solution method

Although many clustering problems can be formulated and
solved by integer programming (e.g. Hansen & Jaumard, 1997; Vi-
nod, 1969), the string property of SCP can be used to develop solu-
tion methods that are more efficient than MIP. In particular, all the
segments inside a cluster have to be adjacent (i.e. have contiguous
indices); thus, each possible cluster can be represented by its first
and last segments since all the segments in between, if any, have to
be also in the same cluster.

Let the road be divided by a set of m contiguous segments
where each segment i = 1, . . ., m is associated with an original
treatment cost ci. Single or contiguous segments will be grouped
into clusters. Let s and t be the first and last segment of cluster
[s, t], where 1 6 s 6 t 6m; then, all the segments with indices
i e [s, t] will also be grouped in cluster [s, t]; there are, at most,Pm

s¼1

Pm
t¼s1 ¼ 1

2 mðmþ 1Þ possible clusters.
In SCP, even if the original treatment costs of segments in the

same cluster are different, their final treatment costs have to be
the same and no less than their original treatment costs. In other
words, each segment i e [s, t] in the same cluster [s, t] will receive
the same final treatment with cost Z

_

ðs; tÞ ¼maxi2½s;t�fcig. If we as-
sume each cluster will incur a constant initial set-up cost (or
mobilization cost) f, then the total cost for cluster [s, t] can be
calculated by Cðs; tÞ ¼ ðt � sþ 1Þ � Z

_

ðs; tÞ þ f . In practice, the gov-
ernment might require the total cost for a cluster to be larger
than or equal to a constant minimum amount L to avoid the gen-
eration of too many small clusters. Therefore, if the road is
grouped into n clusters [sj, tj] for j = 1, . . ., n, where s1 = 1,
sj+1 = tj + 1 for j = 1, . . ., n � 1, tj P sj for j = 1, . . ., n, and tn = m, then
its total cost equals to

Pn
j¼1Cðsj; tjÞ. Our objective is to seek the

minimum total cost over all the possible clustering number
n e [1, m] and combinations [sj, tj], while satisfying treatment
requirements.
3.1. Segment graph and its mathematical properties

We propose a network model called segment graph SG = (V, E) to
represent an SCP. In particular, let node set V = {vi: i = 1, . . ., m + 1}
represent the set of m segments (i.e. v1, . . ., vm) and a dummy sink
node vm+1. Here vm+1 represents the end of a clustering. Each cluster
arc (vs, vt) e E with cost ĉst ¼ Cðs; t � 1ÞP L for each s and t such
that 1 6 s 6 s + ml � 1 < t 6m + 1 represents a qualified cluster
[s, t � 1]. Several properties related with SG = (V, E) are as follows:
Lemma 1

(a) A segment graph SG = (V, E) contains at most |V| = O(m)
nodes and |E| = O(m2) arcs.

(b) Constructing SG = (V, E) takes O(m2) time and storage space.
Proof

(a) It is clear that there are totally m + 1 = O(m) nodes. Further-
more, there are at most

Pm
s¼1

Pmþ1
t¼sþ11 ¼ 1

2 mðmþ 1Þ ¼ Oðm2Þ
arcs.

(b) Trivial. h
Lemma 2

(a) The arcs on a v1 � vm+1 path in SG correspond to a feasible
clustering to the SCP.

(b) The length for a v1 � vm+1 path equals to the total cost of that
clustering.
Proof

(a) Given a v1 � vm+1 path in SG, all the arcs on that path are
qualified clusters to the SCP; also, their order obeys succes-
sive relationships, which means all the segments will be
included without gaps or overlaps. Thus, the arcs on each
v1 � vm+1 path correspond to a feasible clustering.

(b) This is trivial since the length of each v1 � vm+1 path equals
the sum of the arc lengths, which equals the sum of the final
cost associated with its corresponding clusters lying on the
path. h
Lemma 3

(a) The segment graph SG is acyclic.
(b) A shortest v1 � vm+1 path in SG can be identified in O(m2) time.
Proof

(a) Since each cluster arc (vs, vt) e E always points from a tail
node of smaller subscript indices to larger subscript indices
by 1 6 s 6 s + ml � 1 < t 6m + 1, thus SG is acyclic, there
exists no directed cycle and SG is acyclic.

(b) Since SG is acyclic by (a), a shortest v1 � vm+1 path can be
identified by a topological ordering algorithm in O(|E|) =
O(m2) time, by Lemma 1(a). h

By Lemma 2 and Lemma 3, we have shown that SCP is polyno-
mial-time solvable. This answers the open question raised in the
end of Section 2 about the complexity of SCP. In particular, by
constructing a segment graph SG = (V, E) and solving a v1 � vm+1

shortest path problem on SG, we can solve the original SCP in
polynomial time, which should be more efficient than solving a
UFLP-based formulation by integer programming. This finding is
important in that similar techniques can also be extended to calcu-
late an exact optimal solution within short time for related spatial
clustering problems investigated by Tsai et al. (2006) and Yang
et al. (2009), where their proposed FCM can only give a good solu-
tion without guarantees of the running time and solution quality.

3.2. A polynomial-time algorithm for SCP and illustrative examples

Now, we give an algorithm, named TOSC, based on the idea of
topological ordering, to calculate a segment clustering by a
v1 � vm+1 shortest path in SG as follows:
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Algorithm TOSC([c1, . . ., cm], f, L, ml)

Step 1. Calculate the cost for each possible cluster
combination:
Calculate the final total cluster cost C(s, t) for each [s,
t]cluster by

Cðs; tÞ ¼ ðt � sþ 1Þ � Z
_

ðs; tÞ þ f ;1 6 s 6 t 6 mþ 1, where

Z
_

ðs; tÞ ¼maxi2½s;t�fcig.
Step 2. Construct the set of qualified cluster arcs E in the

segment graph SG:
Construct m + 1 nodes: v1, v2, . . ., vm, vm+1 and qualified
cluster arc (vs, vt) e E with cost
ĉst ¼ Cðs; t � 1ÞP L;1 6 s 6 sþml � 1 < t 6 mþ 1.

Step 3. Initialize for the distance labels and predecessors:
Let D(vi) =1and P(vi) = NULL denote the initial distance
label and predecessor for each node vi, respectively.
Set D(v1) = 0 and P(v1) = NULL

Step 4. Calculate a v1 � vm+1 shortest path with topological
ordering operations:
For i = 1 to i = m do

For each qualified cluster arc (vi, vj) do
If Dðv jÞ > Dðv iÞ þ ĉij then

Dðv jÞ ¼ Dðv iÞ þ ĉij; Pðv jÞ ¼ v i;
Step 5. Trace the best clustering:

If D(vm+1) =1 then
there exists no feasible clustering, STOP.

Else
output the best clustering by tracing from vm+1 back to v1

based on predecessors. The best clustering has the total cost
equal to D(vm+1).

In algorithm TOSC, the bottlenecks are Steps 1, 2,and 4, which
take O(m2) time to calculate individual cluster cost, construct the
segment graph, and calculate the shortest path, respectively. On
the other hand, Steps 3 and 5 take O(m) time.

Note that Step 4 conducts topological ordering operations that
scan each qualified cluster arc once. Since there are totally O(m2)
qualified cluster arcs by Lemma 1(a), it takes O(m2) time. Step 4
calculates the shortest path from v1 to vm+1 since SG is acyclic. As
a result, although the Fibonacci heap implementation of Dijkstra’s
algorithm proposed by Fredman and Tarjan (1987) also takes
O(|E| + |V| log |V|) = O(m2) time to calculate a shortest v1 � vm+1

path, it requires more sophisticated data structures and is more
difficult to implement than the topological ordering operations of
TOSC.

We give two examples, as illustrated in Fig. 2, to explain the
structure of SG and how TOSC works.

In Fig. 2a, there are five segments to be clustered with individ-
ual treatment costs equal to 6, 8, 4, 3, and 4, respectively. Each
cluster induces a fixed cost 3. In this example, all the 15 generated
cluster arcs are qualified since L = 0 and ml = 1. Take a v1 � v6 path
in SG that passes cluster arcs (v1, v2), (v2, v4) and (v4, v6); for exam-
ple, its length equals C(1, 1) + C(2, 3) + C(4, 5) = 39, since C(1, 1) =
6 + 3 = 9, C(2, 3) = 2 �max {8, 4} + 3 = 19, and C(4, 5) = 2 �
max {3, 4} + 3 = 11. On the other hand, the v1 � v6 shortest path
calculated by TOSC passes cluster arcs (v1, v3) and (v3, v6) with
length equal to C(1, 2) + C(3, 5)= (2 �max {6, 8} + 3)+ (3 �max {4, 3,
4} + 3)= 19 + 15 = 34. In the second example, illustrated in Fig. 2b,
there are eight segments to be clustered with individual treatment
costs equal to 6, 8, 4, 3, 4, 3, 6, and 7, respectively. Each cluster in-
duces a fixed cost 3 and is qualified if it includes at least two seg-
ments with a total cost larger than or equal to 20. In this example,
only 6 out of all the C9

2 ¼ 36 generated cluster arcs are qualified
and connected to bothv1 and v6. The v1 � v9 shortest path calcu-
lated by TOSC passes cluster arcs (v1, v4) and (v4, v9) with length
equal to C(1, 3) + C(4, 8) = 27 + 38 = 65.
4. Computational experiments and discussion

In this section, we conduct computational experiments for solv-
ing SCPs. In particular, we test our proposed algorithm TOSC and
compare its performance with CPLEX, a MIP solver, over two real
datasets and eight categories of simulated datasets.

4.1. Settings for our computational experiments

We implement the TOSC algorithm in C language, compiled by
Visual C++ 2005. To validate the correctness and efficiency of TOSC,
we also solve the MIP formulation of SCP by CPLEX 11.2. All the
experiments are conducted on a personal computer with Windows
XP OS, 1 GB RAM, and Intel Core Duo 2 CPU of 1.86 GHz.

We use a subset of continuous roadway pavement segments in
Georgia (see Table A1 in Appendix) as the source to generate two
real test datasets (m = 34 and m = 96) for our experiments. In partic-
ular, the m = 34 case includes the last 34 segments as listed in Table
A1. The m = 96 case includes the entire 96 segments in Table A1,
which was unable to be solved by the Fuzzy c-means algorithm pro-
posed by Tsai et al. (2006) and Yang et al. (2009). The original data
only records the rating for each segment, which can be further used
to derive its corresponding treatment cost based on the relationship
between the segment rating and treatment cost, as shown in Fig. 3.

Simulated datasets are artificially generated to test the robust-
ness and capability of TOSC in solving small-, medium-, and large-
scale SCPs. Eight categories of simulated datasets (m = 30, 50, 100,
250, 500, 1000, 2500 and 5000), where each with ten random road-
way pavement segments (thus totally 800 random simulated data-
sets), are generated and tested, respectively. The roadway pavement
segment rating sequences for each random simulated dataset are
random integers generated uniformly from the range [40, 100].
We then convert these rating into treatment costs based on Fig. 3.

We set the minimum number of segments in each project clus-
ter, ml, to be 2; the cost lower bound for a cluster, L, to be 0 USD;
and the initial set-up cost, f, is set to be 150 thousand USD for all
the simulated datasets.

4.2. Results of our computational experiments

Table 1 lists the computational results of CPLEX and TOSC for
solving two real datasets. Table 2 summarizes the computational
results of CPLEX and TOSC for solving small-scale simulated data-
sets, whereas Tables 3 and 4 only record the computational results
of TOSC for solving simulated datasets of medium and large sizes,
respectively.

The running times listed in Tables 1 and 2 show that TOSC is
very efficient and takes much less time than CPLEX. Take the real
dataset that includes 96 segments, for example; CPLEX could not
solve it within 1 h, even for the tightest upper bounds for the num-
ber of clusters (i.e. n = n*), whereas TOSC calculates an optimal
solution for the same problem in less than 1 s. Note that the same
case was too hard to be solved by the Fuzzy c-means algorithms
proposed by Tsai et al. (2006) and Yang et al. (2009) in their seg-
ment clustering problems.

The efficiency of CPLEX highly depends on n, the initial upper
bound for the number of clusters in SCP. In particular, the closer
n is to n*, the less time CPLEX takes. Take the m = 34 real dataset
as an example; it takes 718, 9328, and 64,187 ms to solve the same
SCP when n is set to 3, 5, and 10, respectively. In this example,
n*=3, so the solution calculated by setting n = 3 takes the least
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Fig. 3. Relationship between pavement segment rating and treatment unit cost
(source: Yang et al., 2009).

Table 1
Computational results of CPLEX and TOSC for two real datasets.

m CPLEX TOSC
Obj. n* Time (ms) Obj. n* Time (ms)

34 2254 3 718 2254 3 0
96 4851 10 – 4851 10 15

–, cases that take time longer than 1 h to get an optimal solution.
Here n is initially set to be 3 and 10 for these two real datasets, respectively.
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time, whereas the time spent by setting n = 5 or n = 10 grows expo-
nentially. In general, there is no clear way beforehand to set n as
close to n* as possible. However, even if we set n = n* for CPLEX
to solve small-scale datasets, it still takes much more time than
our proposed TOSC algorithm. Therefore, in the rest of the compu-
tational experiments, we only test the performance of TOSC for
solving medium-scale and large-scale datasets.

Tables 3 and 4 show that TOSC still runs very fast with very sta-
ble performance for all the simulated datasets of medium to large
sizes. Furthermore, if we take log to the average computational
time (denoted by T), we observe that log (T) is proportional to-
log (m), as shown in Fig. 4. This observation validates the theoret-
ical complexity of TOSC, T = O(m2), as derived in Section 3.
Table 2
Computational results of CPLEX and TOSC for the small-scale simulated datasets.

Random cases m = 30

CPLEX TOSC

Obj. na Time (ms) Obj. n* Time (

1 5538 7 12,781 5538 7 0
2 4528 6 3429 4528 6 0
3 5334 7 6828 5334 7 0
4 2250 1 15 2250 1 0
5 3260 2 46 3260 2 0
6 4570 5 1921 4570 5 0
7 2250 1 15 2250 1 0
8 5583 8 15,421 5583 8 0
9 4255 5 1609 4255 5 0

10 3260 2 46 3260 2 0

Avg. 4211 0

–, cases that take time longer than 1 h to get an optimal solution.
a Time spent by CPLEX is based on setting n = n*.
In summary, our proposed TOSC algorithm is very efficient and
robust. It outperforms CPLEX even for small-scale datasets. It can
deal with medium-scale and large-scale datasets within minutes.
On the other hand, CPLEX usually takes more than 1 h, even for
small-scale problems. The performance of CPLEX can be improved
via good initial upper bounds for n. However, even by exploiting
our proposed binary search techniques, CPLEX still performs very
poorly in solving datasets of medium to large sizes. Therefore, we
conclude that our proposed TOSC algorithm is very promising in
grouping pavement segments that result in minimal total M&R cost.
5. Conclusions

In order to allocate and arrange the resources for pavement
treatments along a highway more cost effective, a new segment
clustering problem (SCP) is first formulated to address this need
in which the best grouping of pavement M&R projects (i.e. seg-
ments) has to be identified to minimize the total M&R cost. In addi-
tion, we have proposed a new methodology and algorithm to
address this problem. It is hoped the new problem formulation
and proposed algorithm/methodology can effectively address this
urgent need and stimulate other algorithm development (with
the new problem formulation).

By viewing each segment as a customer and each cluster as a
warehouse, we first propose a specialized uncapacitated facility
location problem (UFLP) integer programming model to solve
SCP. The constraints of UFLP provide more insights into SCP. In par-
ticular, the string property requiring the clustered segments to be
spatially contiguous inspires us to develop a network flow model
called segment graph (SG) for solving SCP. In SG, each node corre-
sponds to a segment, and each arc represents a qualified cluster.
This paper presents construction of the nodes and arcs of SG in
O(m2) time by using O(m2) storage space. We also show SG is acy-
clic and propose an O(m2) time algorithm, TOSC, to determine a
shortest path, which corresponds to a best clustering, based on
idea of topological ordering.

The results of our computational experiments indicate TOSC is
very efficient. In particular, TOSC dramatically outperforms CPLEX
for all the real and artificially generated datasets that have been
tested. It has demonstrated the proposed TOSC algorithm is very
promising to group pavement segments that result in minimum
total M&R cost.

For future research, we suggest investigation of more realistic
and complicated segment clustering problems by considering dif-
ferent objective functions that take some nonlinear terms, such
m = 50

CPLEX TOSC

ms) Obj. na Time (ms) Obj. n* Time (ms)

– – – 9408 12 0
7105 8 134,030 7105 8 0
4810 3 1499 4810 3 0
4810 3 828 4810 3 0
– – – 11,278 13 0
7130 7 142,499 7130 7 0
– – – 7063 9 0
3566 3 2343 3566 3 0
4790 5 33,374 4790 5 0
3544 2 296 3544 2 0

44,981 0



Fig. 4. Relationship between the average computational time and the number of segments for the tested medium-scale and large-scale simulated datasets.

Table 4
Computational results of TOSC for large-scale simulated datasets.

Random cases m = 1000 m = 2500 m = 5000

Obj. n* Time (ms) Obj. n* Time (ms) Obj. n* Time (ms)

1 82,595 27 797 194,510 42 11,750 376,247 67 92,235
2 87,429 34 781 195,774 58 11,750 359,688 41 92,016
3 93,281 47 812 196,594 56 11,719 385,519 81 92,094
4 86,039 39 796 186,528 33 11,781 381,811 80 92,156
5 84,893 35 796 181,681 30 11,734 379,485 64 91,875
6 85,942 29 796 187,618 32 11,734 402,768 118 93,078
7 96,364 52 796 199,929 63 11,750 397,924 100 92,079
8 95,357 52 796 196,911 51 11,734 391,442 91 92,923
9 81,644 22 796 189,805 39 11,734 371,798 47 92,782

10 86,136 40 796 201,370 63 11,796 401,619 112 92,641

Avg. 796 11,748 92,388

Table 3
Computational results of TOSC for medium-scale simulated datasets.

Random cases m = 100 m = 250 m = 500

Obj. n* Time (ms) Obj. n* Time (ms) Obj. n* Time (ms)

1 9470 5 0 23,425 12 16 40,810 11 109
2 10,630 7 0 31,525 23 15 37,428 6 109
3 12,888 14 0 21,090 10 15 39,490 7 109
4 13,210 12 0 21,070 8 15 38,610 9 109
5 10,568 10 0 23,390 12 15 50,025 32 109
6 8285 4 0 18,768 4 16 47,413 33 110
7 14,328 15 0 23,408 12 15 42,984 19 109
8 8310 3 0 23,408 12 15 38,538 10 109
9 9470 5 0 31,144 26 15 39,790 9 125

10 8310 3 0 26,651 21 15 45,570 21 110

Avg. 0 15 111
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as the sum of the squares of the difference in Euclidian distances of
segments, by adding additional constraints, by relaxing the string
property, or by extending the one-dimensional SCP to a two-
dimensional SCP on a planar graph. In these cases, our proposed
UFLP model can be flexibly modified more easily and serve as a
good start for developing more efficient solution methods.
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