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Although the haplotype data can be used to analyze the function of DNA, due to the significant efforts
required in collecting the haplotype data, usually the genotype data is collected and then the population
haplotype inference (PHI) problem is solved to infer haplotype data from genotype data for a population.
This paper investigates the PHI problem based on the pure parsimony criterion (HIPP), which seeks the
minimum number of distinct haplotypes to infer a given genotype data. We analyze the mathematical
structure and properties for the HIPP problem, propose techniques to reduce the given genotype data into
an equivalent one of much smaller size, and analyze the relations of genotype data using a compatible
graph. Based on the mathematical properties in the compatible graph, we propose a maximal clique heu-
ristic to obtain an upper bound, and a new polynomial-sized integer linear programming formulation to
obtain a lower bound for the HIPP problem.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The Post-Genomic Era focuses on functional genome analysis,
including studying the knowledge about the genetic constitution
of an individual chromosome called the haplotypes. Information
from the haplotype data can be applied in various domains, such
as linkage disequilibrium, inference of population evolutionary
history, disease diagnosis, and customization of treatment for each
individual [1]. However, since the time, labor, and expense in-
volved in directly collecting the haplotype data require too much
resources and efforts, the researchers usually collect the descrip-
tions of one conflated pair of haplotypes called the genotype data,
rather than the haplotype data [2] for further analysis. We are
interested in solving the population haplotype inference (PHI)
problem which infers the haplotype data for a population of dip-
loid species from their genotype data. Since each genotype has to
be resolved by a pair of haplotypes from a large number of possible
haplotype pair candidates, the PHI problem is a difficult combina-
torial problem.

Although there are many possible haplotype pairs for resolving
a given genotype matrix, the real-world haplotype pairs are consti-
tuted by a very few amount of distinct haplotypes. For example,
Drysdale et al. [3] identify 13 SNPs in the human b2AR gene, which
can be composed by many (e.g. with number up to 213 = 8192) pos-
sible haplotype combinations. However, among all the possible
haplotype combinations, only 10 haplotypes are related to asth-
ll rights reserved.
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matic cohort. Thus Gusfield [4] suggests a combinatorial optimiza-
tion problem called the haplotype inference based on pure
parsimony (HIPP) which seeks the minimum amount of distinct
haplotypes to resolve a given genotype matrix.

Suppose we have m genotypes and each genotype contains n
sites. These data can be expressed by an m � n genotype matrix
G, where each row in the genotype matrix corresponds to a geno-
type data for one individual, each column stands for one SNP, and
each element in G has value 0, 1, or 2. A site is called homozygous
wild type if it has value 0, homozygous mutant type if it has value
1, and heterozygous if it has value 2. A site in a genotype is resolved
if it has value 0 or 1, and ambiguous if it has value 2. A genotype is
called resolved if there are two haplotypes such that for every site
with value 0 or 1 in that genotype, the value of that site in the two
haplotypes are either both with value 0 or both with value 1; for
every site with value 2 in that genotype, one of the haplotype must
have value 0 and the other haplotype must have value 1 in that
site. The objective of an HIPP problem is to find a 2m � n haplotype
matrix, in which the ith row in the genotype matrix is resolved by
the (2i � 1)th and the 2ith rows in the haplotype matrix, and the
number of distinct haplotypes is minimized.

Take Fig. 1 for example. Given a genotype matrix G =
{202,021,212}, there are 2, 1, and 2 possible haplotype pairs to re-
solve genotype 1, 2, and 3, respectively. Furthermore, there are 6, 5,
5, or 4 distinct haplotypes if we select (p1, p3, p4), (p1,p3,p5),
(p2,p3,p4) or (p2,p3,p5) to resolve the genotype matrix, respectively.
Using the pure parsimony criterion, (p2,p3,p5) will be selected to
resolve all the genotypes, since this combination induces the min-
imum number of distinct haplotypes.
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Fig. 1. A PHI example by pure parsimony criterion.

Fig. 2. A compatible graph example.
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The HIPP problem has been shown to be an APX-hard problem
by Lancia et al. [5]. The solution methods in the literature for solv-
ing the HIPP problem are either based on mathematical program-
ming techniques such as integer linear programming (see [4,6])
and quadratic integer programming (see [7,8]), or heuristic algo-
rithm (see [9]). In particular, Gusfield [4] gives the first ILP formu-
lation called RTIP to model the HIPP problem. Although the RTIP is
potentially exponential-sized, it is practically faster than the
PolyIP, the polynomial-sized ILP formulation proposed by Brown
and Harrower [6]. Both RTIP and PolyIP calculate the exact optimal
solution for the HIPP problem, but they usually consume a lot of
computational resources and time, and are not suitable for solving
large-scale HIPP problems. Wang and Xu [10] give a branch and
bound algorithm called HAPAR. HAPAR also takes a lot of compu-
tational time since it tries out all the combinations to solve the
HIPP problem. Based on different Integer Quadratic Programming
formulations, Huang et al. [7] give an approximation algorithm
called SDPHapInfer and Kalpakis and Namjoshi [8] propose a heu-
ristic algorithm to solve the HIPP problem. SDPHapInfer performs
well for smaller cases but its error rates increase dramatically for
larger cases (see [11], for details).The heuristic algorithm by
Kalpakis and Namjoshi [8] require further investigation. On the
other hand, the parsimonious tree growing heuristic algorithm
called PTG by Li et al. [9] is very fast, but its effectiveness in terms
of the optimality gap (i.e. the difference in the number of distinct
candidate haplotypes used, compared with the optimal solution)
remains to be evaluated.

Recently, Boolean Satisfiability (SAT) has been proposed for
solving the HIPP problem with success. In particular, the SAT-based
method by Lynce and Marques-Silva [12,13] can calculate exact
optimal solutions for large-scale HIPP problems. The Pseudo-Bool-
ean Optimization (PBO) model proposed by Graca et al. [14,15] also
use similar techniques based on the PolyIP model, and are efficient
for solving larger HIPP cases. Although these methods also discuss
compatible relations between genotypes, they do not use these
properties to construct integer programming model as proposed
in this paper.

To design a better algorithm for solving the HIPP problem, this
paper investigates the mathematical properties of the HIPP prob-
lem. We identify several mathematical properties which are useful
in reducing the complexity of the HIPP problem. By introducing
compatible relations between genotypes, we first give a heuristic
to estimate the upper bound for the HIPP problem, and then esti-
mate its lower bound by a new polynomial-sized ILP formulation.

The rest of this paper is organized as follows. Section 2 intro-
duces the notations and compatible graph used for our analysis.
Section 3 discusses the mathematical properties of the HIPP prob-
lem. Our upper bound heuristic and new ILP formulation for calcu-
lating the lower bound of the HIPP problem are illustrated in
Section 4. Section 5 concludes the paper.
2. Preliminaries

Let G = {g1,g2, . . . ,gn} = [gi,j] be an m � n genotype matrix, where
each row gi = {gi,1,gi,2, . . . ,gi,n}. If gi = ha � hb, we say genotype gi can
be resolved by a candidate haplotype pair ha and hb, where for each
j = 1, . . . , n, (ha,j,hb,j) = (0,0) or (1,1) when gi,j = 0 or 1, or
(ha,j,hb,j) = (0,1) or (1,0) when gi,j = 2, respectively. In such a case,
we also say that ha is the conjugate (or complementary) haplotype
for hb in resolving gi. Note that any two of the three elements in
the set {gi,ha,hb} can uniquely determine the remaining 1 � n vec-
tor by the relation gi = ha � hb. For our convenience, we also define
G = G0 [ G1 [ G2, where G0, G1, and G2 represent the set of geno-
types that contains zero, one, and at least two heterozygous sites,
respectively.

A genotype may be resolved by many possible haplotype pairs.
Denote CHP(i) the set of candidate haplotypes pairs that can re-
solve genotype gi. Let 1 be a 1 � n row vector with element 0, 1,
or 2. We say 1a is compatible with 1b, denoted by 1a � 1b, if
(1a,j,1b,j) R {(0,1), (1,0)} for each j = 1, . . . , n; otherwise, we say 1a

is incompatible with 1b, denoted by 1a ¿ 1b. By the relations of
compatibility between different genotypes in G, we can construct
an undirected compatible graph of m nodes and ~a arcs, denoted
by CG(G), where each node a represents a genotype ga in G and
node a connects node b by an arc when ga � gb. Fig. 2 gives an
example of a compatible graph.

When ga,j = gb,j for each j = 1, . . . , n and a – b, we say ga is a
duplicated genotype of gb, denoted by ga � gb. When two haplotype
pairs ðha1 ;ha2 Þ and ðhb1 ; hb2 Þ satisfy that ha1 ¼ hb1 (thus ha2 ¼ hb2 Þ or
ha1 ¼ hb2 (thus ha2 ¼ hb1 Þ, we say they are equivalent, denoted by
ðha1 ;ha2 Þ � ðhb1 ;hb2 Þ. Let Z(G) represent the optimal objective value
for an HIPP problem with an input genotype matrix G.

In the next section, we will give several mathematical proper-
ties for solving the HIPP problem. The summarized mathematical
properties are useful in reducing the complexity of the HIPP prob-
lem, which help to design a better algorithm or formulation for
solving the HIPP problem.
3. Mathematical properties for the HIPP problem and
compatible graph

Here we propose several mathematical properties useful for
developing efficient HIPP algorithms.

Property 1. Different genotypes ga and gb cannot be resolved by the
same haplotype pair. In other words, if ga – gb for some a – b, then
CHP(a) \ CHP(b) =£.
Proof. Suppose CHP(a) \ CHP(b) – £ and (ha,hb) 2 CH-
P(a) \ CHP(b). Then ga = ha � hb = gb, which contradicts the
assumption that ga – gb. h
Property 2. Suppose ga � gb for some a – b, ga, gb 2 G. Let
G0 = Gn{gb}, then Z(G0) = Z(G).
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Proof. Let ðha1 ;ha2 Þ and ðhb1 ;hb2 Þ be the optimal solution of the
HIPP problem that resolves ga and gb in G, respectively. Whether
ðha1 ;ha2 Þ � ðhb1 ;hb2 Þ or not, resolving gb by ðha1 ;ha2 Þ will not
increase Z(G) since both ha1 and ha2 have been counted in Z(G).
Since resolving gb by ðha1 ;ha2 Þ has the same effect as removing gb

from G, thus Z(G0) 6 Z(G).
Suppose Z(G0) < Z(G), then we may construct another genotype

G00 by adding a gb to G0. Since the optimal solution for resolving G0

and ðha1 ;ha2 Þ for gb can be used as a feasible solution for resolving
G00 with the objective value equal to Z(G0), we know Z(G00) 6 Z(G0).
However, G00 � G and thus Z(G) 6 Z(G0) contradicting the assump-
tion of Z(G0) < Z(G). Therefore, Z(G0) = Z(G). h
Property 3. Suppose that gi,a 2 {0,1} for each i = 1, . . . , m, then we
may divide the original HIPP problem into at most two HIPP subprob-
lems where all the elements in the ath column of one subproblem have
value 0 and the elements of the same column in the other subproblem
have value 1.
Proof. If all the elements in the ath column of G have the same
value 0 (or 1), all the candidate haplotypes must have the same
value 0 (or 1) in their ath column. Thus removing the entire ath
column will not affect the original optimal solution.

Similarly, if some but not all of the genotypes have their ath
element equal to 0 (or 1), their candidate haplotypes must also
have their ath element equal to 0 (or 1), which also means that
these candidate haplotypes cannot resolve those genotypes whose
ath element equal to 1 (or 0). Therefore, we can divide G into two
submatrices by the values in their ath column. h

Property 4. Duplicated or complementary columns can be removed.
Proof. See Section 7.1.3 in Brown and Harrower [6] and Section 5
in Li et al. [9] for details. h

These four properties are helpful in designing more efficient
algorithms or providing good preprocessing operations to reduce
the complexity of the HIPP problem. For example, Properties 2
and 4 imply a preprocessing procedure that removes duplicated
rows, duplicated columns, or complementary columns will not
affect the optimal solution to the original HIPP problem. In prac-
tice, these techniques do help to reduce the size of the formula-
tions (see [4,6,9]), especially for those formulations with size
exponential to the number of columns.

Property 3 also suggests a divide-and-conquer technique, where
several subproblems with fewer rows and columns can be identi-
fied according to the value of 0 or 1. The same property also implies
that each subproblem will share common solutions, so that the
merge of the solutions can be easily implemented.

When we reduce the size of the original genotype matrix by
these properties, note that we should not remove any column or
row that contains all 2’s, since different position of the ‘‘0’’ and
‘‘1’’ that resolves each ‘‘2’’ will affect the objective value of the HIPP
problem. For convenience, the genotype matrix G to be analyzed
afterwards in this paper is assumed to contain no duplicated rows,
duplicated columns, and complementary columns.

4. Upper and lower bounds for the HIPP problem based on the
compatible graph

4.1. An upper bound based on maximal cliques in the compatible graph

Using the compatible graph CG(G), we may derive a theoretical
lower bound and upper bound for the optimal objective value of
the HIPP problem.
Lemma 1

(a) For any clique C of size jCj in CG(G), we can always resolve those
genotypes in C by at most jCj + 1 haplotypes . Furthermore, if
there exists a genotype in C and it belongs to G0 (i.e. it contains
no value of 2), we can reduce the upper bound of the inferred
haplotypes to be jCj.

(b) Suppose we can cover all the nodes in CG(G) by w cliques, C1, C2, . . . ,
Cw, then we can always resolve G by at most m + w haplotypes.
If there are totally r genotypes that belong to G0, we can reduce
the upper bound of the inferred haplotypes to be m + w � r.
Proof

(a) Any clique in a compatible graph represents a set of compat-
ible genotypes where any two of them can be resolved by a
common haplotype. By definition of the compatible rela-
tions, there must exist a common haplotype that can resolve
all the genotypes in a clique. In particular, that common hap-
lotype can be easily determined column by column: when-
ever a column among those genotypes in the same clique
contains 1 or 0 (other than 2), we let the common haplotype
to have 1 (or 0), respectively in that site; otherwise, we are
free to select either 1 or 0 to be on that site. Based on the
common haplotype, one can easily derive the other jCj hap-
lotypes to resolve those jCj genotypes in C.
If there exists a genotype in C and it belongs to G0, such a
genotype can be uniquely resolved by a pair of the same
haplotypes. Since we assume that G contains no duplicated
genotypes, there exists at most one such genotype in each
clique. Thus the total number of distinct inferred haplotypes
in this case is at most jCj + 1 � 1 = jCj.

(b) By (a), we can resolve all the genotypes in Ci by at most
jCij + 1 haplotypes. Thus totally we can resolve G by at mostPw

i¼1ðjCij þ 1Þ ¼ mþw haplotypes.
If there are totally r genotypes whose elements are either 0
or 1, each of such genotypes must be located in different cli-
que, or otherwise there exist duplicated genotypes. By (a),
each clique Ci that contains such a genotype can be resolved
by at most jCij haplotypes, which makes the upper bound of
the inferred haplotypes become m + w � r. h

Lemma 1 suggests a heuristic to solve the HIPP problem,
although not to the optimality. In particular, one may iteratively
solve the maximum clique problem over the compatible graph
CG(G) to find the maximum clique bC , then remove bC which
constructs a reduced compatible graph CGðbGÞ ¼ CGðGÞ n bC , wherebG contains the remaining genotypes. These steps can be repeated
until the reduced compatible graph becomes empty. Since solving
a maximum clique problem is NP-complete, one may instead solve
a maximal clique problem which can be done in polynomial time.

Here we give an example to show there may exist better
solution than the solution obtained on the maximal clique
heuristic. Suppose G = {g1, g2, g3} = {210,012,212}, one can easily
identify a common haplotype 010 and draw the compatible graph
that forms a clique of size 3. Using the maximal clique heuristic, we
obtain the solution as g1 = 010 � 110, g2 = 010 � 011, and
g3 = 010 � 111, where totally 4 distinct haplotypes are used.
However, the optimal solution is to resolve g3 by 110 � 011, where
totally 3 distinct haplotypes are sufficient.

4.2. A lower bound based on a polynomial-sized integer linear
programming formulation

The compatible graph also provides a means to estimate the
lower bound of the HIPP problem. Given an m � n genotype matrix
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G, where there exist no duplicated rows, duplicated columns, and
complementary columns, we may seek the best possible combina-
tion of the inferred haplotypes and genotypes based on their com-
patible relations defined in CG(G). To simplify the original HIPP
problem and concentrate on the compatible relations between in-
ferred haplotypes and genotypes, we neglect the detailed site val-
ues for each candidate haplotype and represent it by an abstract
‘‘object’’ called haplotype object. At first glance, we may think that
each genotype is associated with at most two haplotype objects,
and the problem becomes to select as few haplotype objects as
possible without violating the compatible relations.

Note that not all the genotypes require to be associated with
two haplotype objects. For example, any gi 2 G0 suffices to have a
single haplotype object h2i�1 since its inferred haplotype pair
contains identical haplotypes. It is also possible to further reduce
the number of haplotype objects for each gi 2 G1, depending on
its compatible relations with other genotypes. Let CGT(i) =
{gc : gc � gi} represent the set of all the genotypes gc compatible
with gi (i.e. the set of the nodes adjacent to i in the compatible
graph). Note that each gi 2 G1 cannot have more than two compat-
ible genotypes belonging to G0, thus CGT(i) can only fall into one of
the three cases: (1) only two genotypes gc1

; gc2
2 CGTðiÞ belong to

G0, but all the other genotypes in CGTðiÞ n fgc1
; gc2
g belong to

G1 [ G2; (2) only one gc 2 CGT(i) belongs to G0 but all the other
genotypes in CGT(i)n{gc} belong to G1 [ G2; and (3) each gc 2 CGT(i)
belongs to G1 [ G2. For the first case, we know immediately that
gi ¼ gc1

� gc2
. Since both gc1

and gc1
are in G0, which means each

of them is respectively associated with a single haplotype object,
it is no longer necessary to associate any haplotype object to gi.
For the second case, since gc must be one of the inferred haplotype
to gi, it suffices to associate gi with only a single haplotype object
h2i�1. For the third case, since there is no clear clue to cut off any
haplotype objects, we associate two haplotype objects h2i�1 and
h2i to gi. Similarly to the third case of gi 2 G1, for each gi 2 G2 we
also associate it with two haplotype objects h2i�1 and h2i. Note that
in our setting, if h2i is associated with h2i, then implicitly h2i�1 will
also exist.

Take the genotypes in Fig. 3 for example, there are m = 7 geno-
types. Since g2 2 G0, we associate it with h3 only. Among those 3
genotypes in G1, both g4 and g7 fall into case 2, while g5 corre-
sponds to the case 3. Thus we assign h7 to g4, h13 to g7, and h9

and h10 to g5. Similar tog5, we respectively assign two haplotype
objects to each genotype in G2 = {g1,g3,g6}.

By introducing the haplotype objects, we try to identify the hap-
lotype objects that can be shared as more genotypes as possible
and satisfy the given compatible relations between genotypes.
Since we look for the best haplotype objects instead of the exact
haplotype vectors, the solution we obtain can be used as a lower
bound for the original HIPP problem.

For our convenience, we define CHO(i) = {k : gdk/2e � gi} to repre-
sent the index set for those candidate haplotype objects compati-
ble to gi, and IG(k) = {i : gi � gdk/2e} to represent the index set for
those genotypes compatible to hk. In our formulation, for each
gi 2 G, we assign a binary variable xi,k to represent whether the
Fig. 3. An illustrative example for explaining the haplotype objects.
genotype gi selects the haplotype object hk (i.e. xi,k = 1) or not (i.e.
xi,k = 0) among all possible k 2 CHO(i). For each haplotype object
hk, we assign a binary variable yk to represent whether hk has been
selected to resolve some genotype in the optimal solution (i.e.
yk = 1) or not (i.e. yk = 0). Thus the objective function becomes to
minimize

P
kyk. We give the following ILP formulation (HIPPLB)

to calculate a good lower bound for the HIPP problem.

min
X

k

yk ðHIPPLBÞ

s:t:
X

i2IGðkÞ
xi;k 6Myk8k ð1Þ

xi;2i�1 P 1 8i2G0 [G1 and h2i does not exist ð2Þ
xi;2i�1þxi;2i P 1 8i2G1 and h2i exists ð3Þ
16

X
k2CHOðiÞ

xi;k 62 8i2G1 [G2 and h2i exists ð4Þ
X

k2CHOðaÞ\CHOðbÞ
ua;b;k 61 8ga;gb 2G2 such that ga � gb ð5Þ

xa;kþxb;k�ua;b;k 61 8k2CHOðaÞ\CHOðbÞ; 8ga;gb 2G2 such that ga � gb

ð6Þ
xa;2b�1þxa;2b61 8ga 2G2; gb 2G1 such that ga � gb and h2b exists ð7Þ
xa;kþxb;k 61 8ga; gb 2G2; ga¿gb; 8k2 CHOðaÞ\CHOðbÞ ð8Þ
yk;xi;k; ua;b;k 2 f0;1g 8k; i;a;b ð9Þ

For each haplotype object hk, constraints (1) force the optimal
solution to select it (i.e. yk = 1), as long as it is used to infer any
of its compatible genotypes gi (i.e. xi,k = 1). Note that M is a number
no less than jIG(k)j. Besides the binary variable constraints (9), con-
straints (2)–(8) can be categorized into four types:

(a) For each genotype gi 2 G0 [ G1, at least one of its inferred
haplotype objects (either h2i�1, or h2i if it exists) can be
uniquely determined, and therefore it has to be selected to
resolve gi (i.e. xi,2i�1 + xi,2i P 1, if h2i exists, which also
implies the existence of h2i�1; otherwise xi,2i�1 P 1). This is
formulated in constraints (2) and (3).

(b) For each genotype gi 2 G1 [ G2 that is associated with two
haplotype objects (i.e. h2i exists), either one or two haplo-
type objects from any of its compatible genotypes (including
itself) have to be selected. In other words, we have to select
at least one and at most two among those haplotypes objects
compatible to gi in the solution. This is formulated in con-
straint (4).

(c) Since there exist no duplicated rows, by Property 1 in
Section 3, any two compatible genotypes will not select
more than one common haplotype object. In particular, for
each pair of adjacent nodes a and b in the compatible graph
(i.e. ga � gb), we discuss the following cases:

Case (c.1) Both ga and gb are in G2: we assign a binary variable
ua,b,k to represent whether both ga and gb select hk

(i.e. ua,b,k = 1) or not (i.e. ua,b,k = 0). In this case, ga and
gb will not select more than one common haplotype
object by Property 1 in Section 3, thusP

k2CHOðaÞ\CHOðbÞua;b;k 6 1, and xa,k + xb,k � ua,b,k 6 1 for
each k 2 CHO(a) \ CHO(b), as formulated in constraints
(5), (6).

Case (c.2) ga 2 G2, gb 2 G1 and gb is associated with two haplotype
objects: In this case, xa,2b�1 + xa,2b 6 1 ensures that ga
will not select those two haplotype objects associated
with gb at the same time. This is done in constraints (7).

(d) Any two incompatible genotypes will not select any common
haplotype object. To formulate this, for each pair of nonadja-
cent nodes a and b in the compatible graph (i.e. ga ¿ gb), if
both ga and gb are in G2, we set xa,k + xb,k 6 1 to ensure they
will not select any common haplotype object hk, for each
k 2 CHO(a) \ CHO(b), as formulated in constraints (8).



Table 1
Computational results of UBMQ, LBILP, LBLM, and RPoly on 5 random 10 � 10 cases.

Problem set 10 � 10

Algorithms UBMQ LBILP LBLM RPoly

Case 1 6 4 1 6
Case 2 4 2 1 4
Case 3 7 4 2 6
Case 4 8 4 3 7
Case 5 10 5 4 8

Table 2
Computational results of UBMQ, LBILP, LBLM, and RPoly on 5 random 20 � 10 cases.

Problem set 20 � 10

Algorithms UBMQ LBILP LBLM RPoly

Case 1 5 3 1 4
Case 2 8 4 1 6
Case 3 6 2 1 6
Case 4 7 3 1 6
Case 5 12 5 2 9

Table 3
Computational results of UBMQ, LBILP, LBLM, and RPoly on 5 random 20 � 20 cases.

Problem set 20 � 20

Algorithms UBMQ LBILP LBLM RPoly

Case 1 11 3 1 10
Case 2 9 4 2 6
Case 3 16 5 3 12
Case 4 15 5 3 10
Case 5 13 3 2 9

Table 4
Computational results of UBMQ, LBILP, LBLM, and RPoly on 5 random 30 � 10 cases.
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We now use the compatible graph in Fig. 3 to illustrate our for-
mulation as follows: The objective function is to minimize y1 + y2 +
y3 + y5 + y6 + y7 + y9 + y10 + y11 + y12 + y13. The case of k = 1 and k = 3
in constraints (1) are x1,1 + x3,1 + x5,1 + x6,1 + x7,1 6 5y1 and x2,3 +
x4,3 + x7,3 6 5y3. Constraints (2) are composed by x2,3 = 1,x4,7 = 1,
and x7,13 = 1. Constraint (3) gives x5,9 + x5,10 P 1. The case of i = 1
in constraints (4) is formulated by x1,1 + x1,2 + x1,5 + x1,6 +
x1,9 + x1,10 + x1,11 + x1,12 + x1,13 = 2. The case of a = 1 and b = 3in con-
straints (5) corresponds to u1,3,1 + u1,3,2 + u1,3,5 + u1,3,6 + u1,3,9 +
u1,3,10 + u1,3,11 + u1,3,12 + u1,3,13 6 1. The case of a = 1, b = 3, and
k = 2 in constraint (6) gives x1,2 + x3,2 + u1,3,2 6 1. Constraint (7)
are composed by x1,9 + x1,10 6 1, x3,9 + x3,10 6 1, and x6,9 + x6,10 6 1.
There is no constraint (8) for this example since all the genotypes
in G2 are compatible to each other.

For the example illustrated in Fig. 3, its optimal HIPP objective
value is 7. Our upper bound in Section 4.1 gives
m + w � r = 7 + 2 � 1 = 8, since the compatible graph can be cov-
ered by two cliques: 1–3–5–6–7 and 2–4. The optimal HIPPLB

objective value for this example is 5, which selects h1, h3, h7, h9,
and h13 to satisfy the compatible relations. On the other hand, Lyn-
ce and Marques-Silva [13,16] suggested 2j � r as a lower bound,
where j denotes the size of a maximum clique in the complement
of CG(G) and r is the number of genotypes in that clique which do
not have heterozygous sites. For this specific example, r = 0 and
j = 2 since the maximum clique in the complement of CG(G) corre-
sponds to an arc and we can find some arc (i,4) where gi R G0, thus
2j � r = 4, which is worse than our lower bound. More computa-
tional experiments will be conducted in next section, and the re-
sults show our lower bounds are consistently better than theirs.

HIPPLB contains O(m3) binary variables and constraints, which is
polynomial-sized. It may be possible to derive those inferred hap-
lotype vectors for the optimal haplotype objects based on the solu-
tion of HIPPLB. If such a feasible inferred haplotype vectors can be
calculated, one would obtain an optimal solution to the HIPP prob-
lem. Otherwise, the optimal solution of HIPPLB can be used as a
new cut (i.e. constraint) to further improve the lower bound.
Problem set 30 � 10

Algorithms UBMQ LBILP LBLM RPoly

Case 1 8 3 3 5
Case 2 8 4 3 4
Case 3 12 4 4 7
Case 4 10 3 2 6
Case 5 11 4 1 6
4.3. Preliminary computational experiments on simulated data

We use the program by Hudson [17] to simulate a 2m � n hap-
lotype matrix, and then randomly pair two haplotypes from these
2m haplotypes to produce an m � n genotype matrix in a way that
none of the 2m haplotypes is repeatedly paired. Similar simulation
settings can also be found in [4,6,7,10].

All the computational experiments are conducted on a Personal
Computer with Intel Core2 1.83 GHz CPU, 2 GB RAM and Windows
XP operating system. Three heuristics are implemented and evalu-
ated: (1) our upper bound heuristic proposed in Section 4.1 that
iteratively calculates for maximal cliques in the compatible graph,
denoted as ‘‘UBMQ’’, is implemented in C++, compiled by Visual
C++; (2) our lower bound heuristic proposed in Section 4.2 that
solves for a polynomial-sized ILP HIPPLB, denoted by ‘‘LBILP’’, is
implemented in C++, compiled by Visual C++, and linked with
CPLEX 9.0 callable library; and (3) the lower bound heuristic sug-
gested in [13,16], denoted by ‘‘LBLM’’. We implement LBLM using
the maximum clique algorithm by Konc and Janečič [18]. More-
over, we compare UBMQ, LBILP, and LBLM with ‘‘RPoly’’, the pseu-
do-Boolean optimization model by Graca et al. [14,15] that
calculates the optimal HIPP solutions.

Table 1–4 lists the results of UBMQ, LBILP, LBLM and RPoly on
solving four problem sets of different genotype matrix sizes
(10 � 10, 20 � 10, 20 � 20, and 30 � 10), where 5 random test
cases for each problem set have been generated.

The results of our computational experiments indicate our pro-
posed upper bounds and lower bounds do serve their purposes,
although some of them seem not so tight in our tests. Nevertheless,
LBILP performs consistently better than LBLM in all the test cases.
The upper bound may be further improved by better techniques
to solve the maximum clique problem. The lower bound may also
be improvable by introducing new constraints such as relations of
genotypes to haplotype objects among more than two genotypes,
or relations between the haplotype objects of compatible geno-
types depending on individual site. On the other hand, although
not listed here, all of our proposed algorithms can calculate the re-
sults very efficiently, compared with other time-consuming ILP
techniques such as the RTIP by Gusfield [4] and PolyIP by Brown
and Harrower [6].

5. Conclusions

This paper analyzes the mathematical properties for the HIPP
problem. In particular, we show several properties that can be used
to reduce the size of the original HIPP problem. Some properties
also suggest efficient solution methods to divide the original prob-
lem into several disjoint subproblems of smaller size. Based on the
compatible relations between genotypes, we suggest a heuristic
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that iteratively solves the maximal clique problems for computing
a good feasible solution that provides a good upper bound. A
polynomial-sized ILP has also been proposed to seek the fewest
haplotype objects that resolve all the genotypes, based on the com-
patible relations. Our computational experiments indicate our pro-
posed lower bound technique performs consistently better than
the one by Lynce and Marques-Silva [13] and Hudson [17], and
thus can be used to speed up some ILP-based HIPP solution meth-
ods such as RTIP or PolyIP.

For future research directions, we suggest to investigate tighter
upper and lower bounds, whether based on the ILP or Boolean
variables.
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