
國 立 成 功 大 學

資 訊 管 理 研 究 所

碩 士 論 文

大眾運輸路網中最短時間及最少旅費之行程規劃研究

Optimal Paths Based on Time and Fares in Transit Networks

指導教授：王逸琳 博士

研 究 生：王建傑

中 華 民 國 九 十 七 年 八 月

ilin
矩形

ilin
矩形

ilin
矩形

ilin
矩形

大眾運輸路網中最短時間及最少旅費之行程規劃研究

國立成功大學資訊管理研究所碩士班

摘 要

在現代化的都會區中，大眾運輸是日常生活中不可或缺的工具。過去

大部分乘客都利用時刻表手冊等資訊來規劃其行程，然而隨著交通逐漸繁

忙，大眾運輸路網不斷擴建，現今的大眾運輸路網業已十分複雜，往往需

要個人導航與行程規劃系統協助方能有效使用；然而，市面上的導航與行

程規劃系統多為汽車駕駛者所量身打造，相較之下可提供大眾運輸乘客導

航與行程規劃服務之工具幾乎屈指可數；由於大眾運輸路網具有路線固

定、規律的營運時間、以及非線性的收費標準等等諸多特殊性，導致原來

適用於一般道路路網之導航或行程規劃系統不再適用，因此發展適用於大

眾運輸乘客便捷實用的行程規劃系統誠為當務之急。

在使用者輸入起訖點及其出發時間後，本論文提出數個數學模型與演

算法以在具有時刻表的大眾運輸路網中規劃最短旅行時間以及最少旅費

之行程。在規劃最短旅行時間行程方面，我們首先僅針對搭乘公車、捷運

等大眾運輸工具之行程進行規劃，接著再進一步將步行亦列入行程考量，

並提出加速方法縮小路網規模以提升行程規劃效率。在最少旅費之行程規

劃方面，本論文提出數學模型與演算法來處理其非線性的旅費結構，並針

對大台北地區大眾運輸路網的旅費特性提出較簡化的特殊展開網路，以更

有效率的方式求解包括轉乘優惠、兩段票等情況之最少旅費行程規劃。

關鍵字：最短路徑、大眾運輸路網、行程規劃、時刻表、旅費

ABSTRACT

Optimal Paths Based on Time and Fares in Transit Networks

Michael Wang

In a public transportation oriented metropolis such as Tokyo or Taipei, transit

system is a convenient means for personal trip. Historically, most transit pas-

sengers rely on printed schedules for trip planning. However, the transit network

nowadays has become too complicated to navigate manually. With the advance

of technology, various navigation applications have been developed for guiding

private vehicles, but few are designed for public transportation. Given an origin,

destination, and intended departure time, this study proposes two timetable-based

algorithms to search for optimal itineraries so that the total travel time for an in-

dividual is minimized in an transit network. Itineraries showing the suggested

routes with walking access and egress, bus stops, and Mass Rapid Transit (MRT)

information will be generated, considering the time to wait for, to transfer be-

tween, and to stay in transit vehicles, as well as the time to walk between transit

stations. In addition, this study proposes an innovative fare-based algorithm to

search for the cheapest itineraries with non-linear fare structure, and an alterna-

tive fare model is speci�cally developed for Taipei transit system. Optimizing trip

planning according to time or fare meets the common practices of passengers using

transit system in a metropolitan area.

Keywords: shortest path, transit network, multimodal transportation, trip

planning, timetable-based algorithm, non-linear fare structure.

i

ilin
矩形

ACKNOWLEDGEMENTS

 本論文得以付梓，首先以及最重要的必須感謝指導教授王逸琳老師給予的細

心指導，使我跨領域卻不至於惶恐。論文提案期間承蒙王泰裕老師以及翁慈宗老

師對本論文提供研究方向的建議。論文口試期間則承蒙李宇欣老師、林義貴老師、

黃耀廷老師以及洪一薰老師對本論文提供寶貴的意見，使本論文更加完善。謹此

表達我的敬意與謝忱。

 在這兩年研究所求學生涯中，我要感謝林修杰學長、戴群達學長、陳姿君學

姊以及楊橙坤學長的提攜與指導；同屆的陳正楠同學、馬家宜同學、以及劉姿儀

同學一起在研究室奮鬥，使得研究室充滿活力與歡笑；以及李俊賢學弟與陳志偉

學弟與其他學弟妹在論文口試期間參與投影片的製作並在論文寫作期間參與文

稿的審核；感謝你們使我的研究所生活多采多姿。此外，我還要特別感謝我協助

指導的專題學生們－陳雅婷、張家媛、康雅淳、呂明倩－有她們的幫助，使我的

論文更完善。

 最後，謹將完成這份論文以及碩士學位的榮耀與喜悅獻給我的父母及家人，

感謝他們長期以來的支持與包容，使我能更有自信的迎接未來的挑戰，謝謝。

Contents

List of Tables v

List of Figures viii

Chapter 1. INTRODUCTION 1

1.1. Background and Motivation 1

1.2. Problem De�nition and Methodology 4

1.3. Database and Database Management 5

1.4. Structure of Thesis 7

Chapter 2. LITERATURE REVIEWS 8

2.1. Trip Planning Systems 8

2.2. Shortest Path Algorithms 11

2.3. Timetable Information Problems 12

2.4. Multimodal Transit Problems 16

2.5. Fare Problems 17

Chapter 3. METHODOLOGIES ON A BASIC TIMETABLE

INFORMATION PROBLEM 19

3.1. Spatial Data and Temporal Data 21

3.2. Construction of a Basic Timetable-based Network 23

3.3. Query and Solution Method on the Basic Timetable-based Network 25

3.3.1. Procedures 25

3.3.2. An Illustrative Example 28

3.4. Computational Experiments 29

3.4.1. Settings and Problem Sets for the Implementation 29

i

3.4.2. Algorithmic Running Time Comparison 30

3.5. Speed-up Techniques 32

3.6. Summary 34

Chapter 4. METHODOLOGIES ON A MULTIMODAL

TIMETABLE INFORMATION PROBLEM WITH

WALKING TRANSFER 36

4.1. Spatial Data and Temporal Data 37

4.2. Construction of a Multimodal Timetable-based Network 41

4.3. Query and Solution Method on a Multimodal Timetable-based

Network 44

4.3.1. Procedures 44

4.3.2. An Illustrative Example 46

4.4. Computational Experiments 47

4.4.1. Settings and Problem Sets for the Implementation 48

4.4.2. Algorithmic Running Time Comparison 49

4.5. Speed-up Techniques 50

4.6. Summary 53

Chapter 5. METHODOLOGIES ON FARE INFORMATION

PROBLEMS 55

5.1. Spatial Data and Fare Data 56

5.2. Construction of a Fare-based Network 58

5.3. Query and Solution Method on Fare-based Networks 59

5.3.1. Procedures 60

5.3.2. An Illustrative Example 60

5.4. Computational Experiments 61

5.4.1. Settings and Problem Sets for the Implementation 62

5.4.2. Algorithmic Running Time Comparison 63

ii

5.5. Alternative Fare Models 65

5.5.1. Fixed Fare Rate and Variable Fare Rate 65

5.5.2. Transfer Discount 67

5.6. Computational Experiments on Alternative Fare Models 68

5.6.1. Settings and Problem Sets for the Implementation 69

5.6.2. Algorithmic Running Time Comparison 69

5.7. Summary 71

Chapter 6. CONCLUSIONS AND FUTURE RESEARCH 72

6.1. Summary and Contributions 72

6.2. Applications on Di¤erent Platforms 74

6.2.1. Platforms 74

6.2.2. Shortest Path Algorithms 76

6.3. Future Research 78

6.3.1. Multiobjective Shortest Path Problem 78

6.3.2. Dynamic Information 79

6.3.3. Geographic Information System 80

References 81

Appendix A. COMPUTATIONAL EXPERIMENTS ON BASIC

TIMETABLE INFORMATION PROBLEMS 86

Appendix B. COMPUTATIONALEXPERIMENTSONMULTIMODAL

TIMETABLE INFORMATION PROBLEMS WITH

WALKING TRANSFER 88

Appendix C. COMPUTATIONAL EXPERIMENTS ON FARE

INFORMATION PROBLEMS 90

iii

Appendix D. COMPUTATIONAL EXPERIMENTS ON

FARE INFORMATION PROBLEMS WITH

ALTERNATIVE FARE MODEL 92

iv

List of Tables

2.1 Some implementations on Dijkstra�s algorithm 12

3.1 Nomenclature for the basic timetable information problem 20

3.2 Line route information 22

3.3 Timetable information for each route 23

3.4 Nodes information of basic timetable-based network 29

3.5 Time to construct basic timetable-based networks 31

3.6 Relative performance on �ve problem sets with randomly selected OD

pairs 31

3.7 Relative performance on problem set 5 34

3.8 Normalization of relative performance on problem set 5 34

4.1 Nomenclature for the multimodal timetable information problem with

walking transfer 38

4.2 Line route information 39

4.3 Walk distance information 40

4.4 Timetable information for each route 41

4.5 Walking time for arti�cial arcs 47

4.6 Nodes information of multimodal timetable-based network 47

4.7 Time to construct multimodal timetable-based network 49

4.8 Relative performance on �ve problem sets with randomly selected OD

pairs 50

4.9 Relative performance on problem set 5 52

v

4.10Normalization of relative performance on problem set 5 53

5.1 Nomenclature for fare information problem 56

5.2 Fare data 58

5.3 Node information of illustrative example 61

5.4 Fare data of illustrative example 62

5.5 Time to construct fare-based network 64

5.6 Average running time on problem set 5 for di¤erent OD group 64

5.7 Average running time on �ve problem set for randomly selected OD group 65

5.8 Average running time using alternative fare model on problem set 5 for

di¤erent OD group 70

5.9 Average running time using alternative fare model on �ve problem set for

randomly selected OD group 70

6.1 Comparison between single-source shortest path and all-pairs shortest

path algorithms for timetable problems 77

6.2 Comparison between single-source shortest path and all-pairs shortest

path algorithms for fare problem 77

A.1Relative performance on problem set 1 86

A.2Relative performance on problem set 2 86

A.3Relative performance on problem set 3 87

A.4Relative performance on problem set 4 87

B.1Relative performance on problem set 1 88

B.2Relative performance on problem set 2 88

B.3Relative performance on problem set 3 89

B.4Relative performance on problem set 4 89

vi

C.1Average running time on problem set 1 for di¤erent OD group 90

C.2Average running time on problem set 2 for di¤erent OD group 90

C.3Average running time on problem set 3 for di¤erent OD group 91

C.4Average running time on problem set 4 for di¤erent OD group 91

D.1Average running time using alternative fare model on problem set 1 for

di¤erent OD group 92

D.2Average running time using alternative fare model on problem set 2 for

di¤erent OD group 92

D.3Average running time using alternative fare model on problem set 3 for

di¤erent OD group 93

D.4Average running time using alternative fare model on problem set 4 for

di¤erent OD group 93

vii

List of Figures

1.1 Subway systems of Osaka City, Japan 2

1.2 An itinerary generated by MBTA 3

2.1 Illustration of TATIS [38] 10

3.1 A simple transit network 21

3.2 A timetable-based transportation network 28

4.1 A multimodal transit network and its hierarchical display 39

4.2 An illustration of walk-transfer arc 43

4.3 A multimodal timetable-based transit network 46

5.1 A hierarchical representation of a multimodal transit network 57

5.2 A multimodal transit network 58

5.3 A fare-based multimodal transit network 61

5.4 Network construction for variable fare rate in alternative fare model 66

5.5 Network construction for �xed fare rate in alternative fare model 67

5.6 Modi�cation on arc cost of transfer arc connecting MRT to bus 68

viii

ilin
矩形

CHAPTER 1

INTRODUCTION

With the rapid growth of economy since industrialization, tra¢ c congestion

problem has become one of the most pressing issues of modern era. Public trans-

portation is regarded as an e¢ cient method to alleviate tra¢ c jam. The key

measure is to induce people to choose the public tra¢ c vehicles but not their own

cars for personal transit. As Lam et al. [23] pointed out, the commonly adopted

promotion is to provide people with more contented riding conditions and quality

services. In this chapter, we will �st introduce the background and motivation

of our study, and then we will de�ne our problem and methodology. In addition,

we will discuss the database and database management system for our study, and

describe the structure of the thesis in the end.

1.1. Background and Motivation

As public transportation systems become more and more complicated along

with urban expansion, public transportation users need more thorough information

to help them plan journeys e¢ ciently. Since a metropolitan transportation network

usually involves a lot of bus or MRT (Mass Rapid Transit System) routes (see

Figure 1.1 for an illustration of subway system), there usually exists more than

one itinerary to connect any given origin-destination (OD) pair of locations at any

given time.

As a result, passengers may encounter several perplexities while conducting

their trips in a metropolitan area: First, an itinerary may not be easily identi�ed

without the help of a good trip planning information system. The situation be-

comes even worse for visitors new to the area. Second, even if several itineraries

have been provided for guidance, di¤erent itineraries may have di¤erent pro�les

1

2

Figure 1.1. Subway systems of Osaka City, Japan

in the traveling distance, duration, and cost which make it more di¢ cult for a

passenger to select the most suitable itinerary (see Figure 1.2 for an example of

multiple itineraries generated by the trip planning system of Massachusetts Bay

Transportation Authority, abbreviated MBTA). Besides, the itinerary pro�les may

change over time due to the tra¢ c uncertainty or occurrence of holidays. For in-

stance, in Taipei, the problem is not always about availability of services, but

3

Figure 1.2. An itinerary generated by MBTA

sometimes about �nding a suitable travel plan for speci�c personal trip prefer-

ence. Generally speaking, trip preferences that are entitled to determine the best

path include travel time, access and egress time, waiting time, walking distance,

the number of transfers, fares, level of comfort, etc. Among those trip preferences,

the least travel time and the lowest travel fare are the most common objectives,

and will consequently be the main themes of this thesis.

4

1.2. Problem De�nition and Methodology

After reviewing previous works on public transportation trip planning, our

research focuses on two objectives: �nding the shortest travel time through a

uniquely designed public transportation network structure in which timetable co-

ordination is an inherent feature, and generating an itinerary of lowest fare for a

trip on a transit network.

In respect of the �rst objective, for each stop in each bus or MRT route, suppose

the timetable that records the exact schedule of each arrival and departure time

is given, we are interested in devising techniques for generating an itinerary that

allows a passenger to travel in minimal time, given the origin, destination, and the

starting time of one�s trip. For the basic problem where walking is not a means

of transfer, a preprocessing algorithm is proposed to construct a specialized time-

space network, so that the conventional shortest path algorithms can be directly

applied to generate the itinerary of minimum travel time. Furthermore, since the

timetable-based transportation network is an acyclic diagram, topological ordering

algorithm, di¤erent from the variants of Dijkstra�s algorithm, can be applied to

�nd the quickest path more e¢ ciently.

We then discuss a more complex situation: the passengers are allowed to walk

from one node (bus or MRT stop) to another. To solve this problem, a hierarchical

timetable-based network is introduced. In the hierarchical timetable-based net-

work, every unique transit route is a layer itself with transfer arcs connecting each

layer while the walking arcs do not exceed the designated distance. After connect-

ing arti�cial links between transit stations and origin and destination, Dijkstra�s

algorithm and topological ordering algorithm can be applied to obtain the quickest

path.

A functional transit itinerary planner should serve both computers and mobile

devices. However, the natures of mobile devices are so distinct from computers

that we need to develop solution techniques for them respectively. For computers,

5

such as application servers, a transit itinerary planner may be required to handle

multiple requests at the same time. The accessibility and concurrency control of

database are relatively critical. On the other hand, a transit itinerary planner

may only serve one person on a mobile device while the battery life and monitor

size are limited. In this situation, computational e¢ ciency and display screen are

relatively vital. The focal point of this thesis is to improve computational e¢ ciency

so that our transit itinerary planner can perform better on mobile devices. Based

on this axiom, we developed two speed-up techniques to improve computational

e¢ ciency in the timetable information problems.

As for the second objective, two di¤erent models will be applied on the lowest-

fare problem. For each unique transit route, we assume that the travel cost be-

tween every OD pair is known. After links between di¤erent routes, links between

pseudo origin and transit stations, and links between pseudo destination and tran-

sit stations are connected, a fare-based transportation network is thus constructed.

However, we use two di¤erent approaches to assign costs to arcs. The �rst ap-

proach constructs arcs so that every unique transit route is a complete graph itself

to represent cost between every transit station. There will be no cost assigned to

transfer and arti�cial arcs. As for the second approach, we assign di¤erent arc

costs to transit routes with �xed fare rate and variable fare rate. In this model,

in-route arcs only connect adjacent nodes to reduce the number of arcs. Some

rules, such as the �rst transfer to bus from MRT is free, could also be imposed

through the second approach. After connecting the arcs and assigning the costs,

common shortest path algorithm, such as Dijkstra�s algorithm, can be applied to

obtain the cheapest path.

1.3. Database and Database Management

The amount of information on transit network available to us is massive. To

get the most out of these large and complex datasets, tools that simplify the tasks

6

of managing the data and extracting useful information in a timely fashion are

required. Otherwise, data can become a liability, with the cost of acquiring it and

managing it far exceeding the value derived from it.

A database is a collection of data, typically describing the activities of one or

more related organizations. A common database might contain information about

entities and relationships between entities. A database management system, or

DBMS, is software designed to assist in maintaining and utilizing large collections

of data. The need for such systems, as well as their use, is essential nowadays.

Many kinds of database management systems are in use, but our study applies

relational database system (RDBMS).

From the earliest days of computers, storing and manipulating data have been

a major application focus. In the late 1980s and the 1990s, advances were made in

many areas of database systems. Considerable research was carried out into more

powerful query languages and richer data models, with emphasis placed on sup-

porting complex analysis of data. The data is mostly stored in a relational DBMS

and the application layer can be customized to di¤erent users. Most signi�cant,

perhaps, DBMSs have entered the Internet Age. While the �rst generation of web-

sites stored their data exclusively in operating systems �les, the use of a DBMS

to store data accessed through a Web browser is becoming widespread. Queries

are generated through Web-accessible forms and answers are formatted using a

markup language such as Hypertext Markup Language (HTML) to be easily dis-

played in a browser. Database developers are also adding features to their DBMS

aimed at making it more suitable for deployment over mobile devices. With the

emergence of database, we are now in a much friendlier environment for developing

software dealing with large amount of data.

Throughout our research, we use Microsoft Access 2007 to exchange data

with transit network databases on MySQL through Open Database Connectiv-

ity (ODBC).

7

1.4. Structure of Thesis

This thesis is organized as follows: Chapter 2 reviews fundamentals regarding

algorithms, and previous works on timetable-based and fare-based public trans-

portation trip planning; Chapter 3 de�nes the basic timetable-based network struc-

tures and gives solution methods to �nd the quickest path based on a query;

Chapter 4 de�nes the multimodal timetable-based network structures that allow

walking between nodes and gives solution methods to �nd the optimal choice;

Chapter 5 de�nes the fare-based network structure and gives solution methods to

�nd the cheapest path; Chapter 6 summarizes our thesis and contribution, and

then points out some directions for future research.

CHAPTER 2

LITERATURE REVIEWS

In order to minimize travel time and reduce tra¢ c congestion, Hall [16] pointed

out that Multimodal Advanced Traveler Information System (MATIS) was devel-

oped to provide travelers with better information. Transit Advanced Traveler

Information System (TATIS), part of MATIS, o¤ers features that aid travelers

to plan their journey. Koncz et al. [21] mentioned that TATIS has also been

referred to by other names, such as Transit Information System (TIS), Passenger

Information System (PIS), and Advanced Public Transportation System (APTS).

However, TATIS was not initially designed to accommodate individual user pref-

erence but to provide the general public with static travel information. Therefore,

in order to make transit itinerary planner applicable on platforms such as Internet

or personal digital assistance (PDA), we need to design di¤erent computational

techniques, algorithms, and itinerary display. In this chapter, we will �rst glance

through the development of trip planning system, and then review di¤erent aspects

of user preferences in transit trip planning.

2.1. Trip Planning Systems

In a highly urbanized society, such as Taipei, accurate and timely travel infor-

mation can help travelers reach their destinations quickly and safely. To serve this

need, Mouskos and Greenfeld [32] indicated that MATIS uses computers to pro-

vide pre-trip and en route travel information to help travelers choose the safest and

most timesaving path. The history of using computers to provide transit informa-

tion could be traced back to 1970s according to Cathey and Dailey [3]. Initially,

MATIS was designed to assist drivers or passengers making pre-trip travel plan-

ning by learning of tra¢ c condition to avoid congestion or constructions. However,

8

9

with the breakthrough in computer science and communication technology, the ap-

plication of geographic information system (GIS) on transit trip planning was �rst

introduced by Koncz and Greenfeld [22], and later expanded by Peng and Huang

[38]. With the rapid progress in accessibility, Yang and Huang [54] suggested

that transit information not only bene�ts travelers, but also improves the utiliza-

tion of transit system. As Levinson [25] inferred, reducing travelers�exposure to

congestion and confusion reduces their anxiety, and allows e¢ cient calculation of

routes.

Wu et al. [52] reckoned that Internet is one of the emerging technologies

that can serve as an interactive platform for MATIS systems. Some trip plan-

ning systems have already been implemented over the Internet, such as MBTA

(http://www.mbta.com/), or Osaka�s kotsu (http://www.kotsu.city.osaka.jp/). In

addition to Internet, Chen et al. [5] mentioned that wireless communication tech-

nologies have made travel information more accessible to travelers on the go. Es-

pecially, in the new era of the third generation of mobile phones standards and

technologies (3G), network operators could o¤er users a wider range of more ad-

vanced services while achieving greater network capacity. and spectrum e¢ ciency.

This improves the delivery of travel information to mobile users. For example,

MBTA o¤ers its trip planning services on PDA to subscribers of 3G network. In

addition, wireless local area network (WLAN) technologies, such as 802.11g, bring

easily-accessible wireless broadband access to users. Wu et al. [52] proposed that

a large-scale deployment of WLAN over campus or community can serve as a chan-

nel for providing trip planning service to travelers. These emerging technologies

would undoubtedly enhance future development of MATIS.

In order to help travelers utilize the massive and complicated transit network,

TATIS was thus developed. TATIS is one of the facets of Advanced Traveler Infor-

mation System (ATIS), and itinerary planning is one of the principal components

of TATIS. In Yin et al. [55] and Taniguchi and Shimamoto [45], the purpose

10

Figure 2.1. Illustration of TATIS [38]

of itinerary planning is to assist travelers in choosing the optimal path to their

destinations in terms of travel distance, travel time, or other criteria. However,

Rehrl et al. [40] argued that TATIS lacks the ability to accommodate personalized

options, such as preferred arrival or departure time. In the thesis, we will propose

several methods to generate itineraries that meet user speci�cations. Illustrated

in Figure 2.1, itinerary planning incorporates two major elements: route compu-

tation and route display. The goal of route computation is to �nd a connected

sequence of transit route segments from a user-de�ned location to a destination.

Route computation may be based on criteria such as the shortest travel distance,

quickest travel time, or lowest fare speci�ed by the users. According to Caul�eld

and O�Mahony [4], the goal of route display is to e¤ectively present the optimal

route to the traveler for guidance. Shortest path algorithms are the essence of

route computation. We will review some shortest path algorithms in section 2.2.

11

2.2. Shortest Path Algorithms

In this section, we will introduce the basic concepts of shortest path algorithms

that will be needed later throughout the thesis.

Shortest path algorithms are central to most network and transportation prob-

lems. In Zhan and Noon [56], the application of �fteen di¤erent algorithms on real

road networks indicated that it is worthwhile to apply Dijkstra�s algorithm to solve

one-to-one or one-to-some shortest path problems. Dijkstra�s algorithm, the clas-

sical single-source shortest path algorithm, is a greedy algorithm that solves the

single-source shortest path problem for a weighted, directed graph where all edge

weights are nonnegative. In latter section, we will see that most of the timetable-

related problems could be solved by Dijkstra�s algorithms or its variants.

The algorithm works by maintaining a distance label d(i), which is an upper

bound on the length of shortest path to each node i, and the states of temporarily

labeled and permanently labeled with each node. Initially, the distance label is zero

for the source node s, and in�nity for all other nodes, representing the fact that

we do not know any path leading to those nodes. When the algorithm terminates,

the distance label will be the cost of the shortest path from the source node s to

the destination node t, or in�nity if no path exists between s and t.

The algorithm maintains two sets of nodes, S and Q. Set S contains all nodes

whose distance labels have been permanently labeled, and set Q contains all other

nodes. Set S is initially empty, and in each step, the node with the smallest

distance label is moved from Q to S. As a node u is moved into S, the algorithm

relaxes every outgoing arc from u to see if any improvement could be made on the

shortest known path to v by �rst following the shortest path from the source to

u, and then traversing the arc (u; v). If the distance label of node u plus the arc

length of the arc from u to v is smaller than the distance label of v, the algorithm

updates the distance label d(v) with the new smaller cost.

12

Table 2.1. Some implementations on Dijkstra�s algorithm

Abbreviation Implementation Complexity Reference
DIKQ Naive implementation O(jV j2) [10]
Using buckets structure
DIKB Basic implementation O (jEj+ jV jC) [9]
Using heap structure
DIKF Fibonacci heap O (jEj+ jV j log jV j) [11]
DIKH k-array heap O (jEj log jV j) [8]
DIKR R-heap O (jEj+ jV j log (C)) [2]

At termination, when Q = �, the shortest path, if one exist, is found. The

running time of Dijkstra�s algorithm depends on how the priority queue is im-

plemented. There are various implementations with Dijkstra�s algorithm such as

Dial�s implantation of buckets structure and implementation of Fibonacci heap.

In Dijkstra [10], by using a naive implementation, in a graph G = (V;E), the

running time of Dijkstra�s algorithm was O(jV j2), where V is the number of nodes

and E is the number of arcs. However, there are many techniques to improve the

running time of Dijkstra�s algorithm, and some of the most popular implementa-

tions and their e¢ ciencies are listed in Table 2.1. (In a graph G = (V;E), and C

is the maximum arc length in G.)

2.3. Timetable Information Problems

The calculation of minimum paths in a transportation network is a well-

developed part of transport network modeling. In comparison to the huge number

of publications devoted to the shortest path algorithms for highway networks, only

a few literatures discuss issues of �nding minimum paths for public transportation

networks. Although some features of public transportation networks appear sim-

ilar to highway networks, some are fundamentally di¤erent. For instance, transit

vehicles in public transportation networks are not available at call, and hence trip

planning must include a cushion for waiting time. Therefore, a route transfer

waiting time must be included in the trip planning. Moreover, changing from

13

one route to another must be made accordingly to timetables of each route. This

problem had been identi�ed by many researchers [44, 12], who argued that algo-

rithms developed for highway networks or road networks for private vehicles are

not suited for public transportation networks because of some fundamental di¤er-

ences between transit network and other networks. Chriqui [7] �rst discussed the

problem of �common bus line�, where some bus routes share common sections and

a passenger must select the buses he intends to use. Huang and Peng [19] pointed

out that services in a transit system are controlled by their timetables. For these

reasons, a di¤erent approach must be used in calculating shortest paths in transit

networks.

According toMuller-Hannemann et al. [33], one of the most important timetable

problems is the earliest-arrival problem. In this problem, the goal is to �nd a train

connection from a departure station A to an arrival station B that departs from

A not earlier than a given departure time and arrives at B as early as possible.

Although the earliest arrival problem has been studied, details like transfer rules

and tra¢ c days are neglected. Most studies [46, 37, 34, 41] modeled the earliest

arrival problem as a shortest path problem in a static graph and solve the problem

by applying variants of Dijkstra�s algorithm.

In reality, we note that any minimum path in a transportation network using

distance as the arc length without considering transfers between transit routes and

timetable information is not so useful. Because considering only distance implicitly

assumes that the transit vehicles are ready to run on any route at any given time,

and thus transfer time and waiting time for the next available vehicle would be

neglected. Therefore, a timetable-based network that takes both the transit route

and timetable into consideration is more practical for seeking shortest paths in a

public transportation network.

Tong and Richardson [46] proposed a network �le from time schedules. The

�le contains records of all the arcs in the network and provides the input data for

14

executing the algorithm. However, their network structure only records the daily

frequency that a vehicle passing through an arc, which is not completely compati-

ble with the timetable information. In Huang and Peng [19], an objected-oriented

GIS data model for the transportation network was developed to simplify the net-

work structure. Their model provides more �exibility than traditional network

structure. For example, stops at a street intersection, a transit center, or across a

street on a street segment can be grouped as a stop group. Although their network

is designed to incorporate timetable information, some path choices are skipped

during network construction, and thus the optimal choice may be lost during the

search process. Lo et al. [26] proposed a state-augmented multi-modal (SAM)

network. In this network, arcs are classi�ed into two groups: transfer links and

direct in-vehicle links. Because SAM network is designed to accommodate transfer

rules and transit fare, the timetable information is not included. Therefore, SAM

network is not suitable for timetable-based transportation network.

In addition to timetable coordination, Schulz et al. [42] suggested that com-

putation e¢ ciency is another important requirement for �nding optimal path in

public transportation networks, especially when they are implemented in Internet

or mobile-device trip-planning applications. In Internet or mobile environment,

Peng et al. [39] reckoned that people may not have the enough time, and it may

consume too much battery power for the software application to run for more than

a few seconds. Therefore, as said in Hickman [17], performance is the key in these

environments.

Tong and Wong [47] pointed out that an all-or-nothing assignment procedure

could be used in which all �ows are assigned to the minimum generalized cost

itinerary. Schulz et al. [41] demonstrated that a modi�ed Dijkstra�s algorithm

can �nd the shortest path with realistic timetable data of the German railway

company. Huang and Peng [19] developed two schedule-based optimal-path algo-

rithms, forward search and backward search, based on traditional shortest-path

15

algorithms. In Wu and Hartley [53], a forward search shortest-path algorithm was

developed for bi-modal (bus and walking) network. In the studies by Huang and

Peng [19] and Wu and Hartley [53], the concepts of the algorithms were similar,

but the network structures are di¤erent. The former includes timetable informa-

tion as a node attribute, the latter transforms timetable information into cost

(travel time) of arc and starting time at a station. In both situations, however,

some of the paths that may have late departure from an origin but early arrival

to a destination are neglected, and thus the optimal path may not be found. All

of these studies employed variants of Dijkstra�s algorithm, which is in fact can be

further improved using the algorithm of topological ordering from Ahuja et al.[1],

since a timetable-based network is an acyclic directed diagram.

In a trip-planning system, a query generally de�nes a set of valid connections,

and an optimization criterion on that set of connections. In other words, the

system is to �nd the optimal connection with respect to the speci�c criterion.

Muller-Hannemann et al. [33] mentioned that the most fundamental query is

referred to as the earliest arrival problem. In an earliest arrival problem, given

a query that consists of an origin node , a destination node , and an earliest

departure time , one has to seek a feasible route that starts from and is composed

by valid connections in a timetable-based network such that the di¤erence between

the arrival time at and the departure time at is minimized. Note that connections

are valid only if they do not depart before the given earliest departure time to.

However, Wong et al. [51] indicated that most of the studies on timetable

problem had focused on single-mode public transportation. Because it is a common

phenomena for a public transportation network nowadays to comprise more than

one mode, Lo et al. [27] inferred that developing a multimodal route �nding

system has become an important issue.

16

2.4. Multimodal Transit Problems

Nes and Bovy [35] de�ned the term multimodal as the combination of dis-

tinct functional and technical modes of transportation within a trip from origin

to destination. The term mode indicates di¤erent forms (in a vehicular or func-

tional sense) of transportation. This may consist of di¤erent vehicles, such as car,

bicycle, tram, bus, train, or other di¤erent services (such as taxi). McCormack

and Roberts [29] mentioned that it would be di¢ cult to model multi-modal trip

planning systems, especially those which consider both transit and road networks,

with information sources supplied in a great variety of di¤erent formats.

For a multimodal trip that consists of two or more journeys with di¤erent

modes, a transfer by foot is sometimes necessary. In Wu and Hartley [53], walking

links were added into the transportation network to address bi-modal (walking

and bus) problem, but the walking links were limited to travel from origin to the

nearest transit station and to walk the transit station closest to the destination to

the destination. While the travel time on bus could be computed with timetable

information, for traveling on foot, distance between any pair of nodes requires

calculation according to their location. Therefore, data such as longitude and

latitude is essential in node information to model walking problem. In Koncz et al.

[21], average walking speed and Euclidean distance were used to calculate walking

time (or cost) to solve the more general multimodal problem. The average walking

speed was set at 3 kilometer per hour, and thus the walking time is the result of

walking distance divided by average walking speed. In their study, incorporating

walking between transfer nodes into published transit timetables was mentioned

as a future work.

According to Vuchic [48], in a multimodal transit network, there are primarily

two types of transport. One is the bus-type transport. However, Horn [18] pointed

out that the bus-type transport is basically a subset of the road network, but the

freedom for travel is restricted to certain �x routes and timetables. In general,

17

paths for bus-type transport must begin and end at stops (or stations) and trips

can be made only at the times speci�ed in timetables. Another type is the rail-type

transport. As Wong et al. [51] inferred, the rail-type transport is similar to the

bus-type transport but independent of the road network. McCormack and Roberts

[29] suggested that one of the important considerations for multimodal trips is

whether interchanges are possible within the constraints of time and distance. In

some situations, these two types of transport would o¤er di¤erent types of service;

for instance, the bus-type transport may not obey any schedule while rail-transport

follows some �xed timetables. To simplify the problem, we assume that all public

transportation operated accordingly to pre-determined timetables.

On the basis of transport assignment method, Le Clercq [24] mentioned that

several researches [36, 13] had proposed a route choice strategy, hyperpath. Hy-

perpath, connecting the origin to the destination, has the property that at each

stop-node, the passenger awaits only a subset of the available transit lines. In

Lozano and Storchi [28], shortest viable hyperpath was designed to address to

multimodal problem. In a multimodal transit network, some sequences of trans-

portation modes are illogical for transit users. For example, it is very unlikely for

a traveler to board MRT, then transfer to bus, then switch back to MRT, and then

alights from MRT and board bus again. Therefore, this sequence of transportation

modes could be ignored in the transit network. Hyperpath is a method for assign-

ment models, and assignment models are based on transit service frequencies and

passenger distribution. In our study, each transit route is given a �xed timetable,

so hyperpath is not applicable. However, the concept of eliminating unrealistic

travel patterns may be useful in reducing the number of arcs in a transit network.

2.5. Fare Problems

As Lo et al. [26] inferred, for journey planning purposes, transportation modes

may consist of di¤erent fare structures, and some of them are non-linear. Sen et

18

al. [43] pointed out that, for routing problems with non-linear fare structures,

the literature is very sparse. Horn [18] further indicated that some fare structures

in public transportation are zone-based (fare will remain constant over a certain

number of stops), while others may be distance-based (with the fare increase

linearly or non-linearly as the travel distance increases), and some may possess

provision for group concessions (such as discount for students).

McCormack and Roberts [29] suggested that traversing a journey with timetable

will mostly likely not depend on factors such as distance and speed of travel, but on

fares tables and concessions depending on traveler�s status. In Lo et al. [26], these

non-linear fare structures made route costs non-additive, and thus total travel cost

cannot be determined by simply adding up the costs of individual links, making

this problem non-trivial.

In some situations, composite cost comprising a weighted sum of travel costs is

applied. According to several researches [30, 31, 15, 26], this method is useful in

�nding an optimal path accommodating two or more possibly con�icting criteria.

For example, one can assign di¤erent weight to waiting time for transfer and travel

time in vehicle while optimizing a trip both for time and number of transfers.

However, to simplify the problem, we assume that cost, in monetary unit, has

equal value under all circumstances. In other words, the weight of cost is one for

any link. Furthermore, we would adopt �xed fare tables in which cost between

any two stations is known. This will give us a complete graph of the fare-based

network, and thereby help us �nd the cheapest route.

CHAPTER 3

METHODOLOGIES ON A BASIC TIMETABLE

INFORMATION PROBLEM

We �rst consider the basic timetable information problem in which users select

the origin transit station, destination transit station, and intended departure time.

In this basic timetable information problem, we will not consider walking as a

transfer means. The problem that takes walking as a transfer means will be

discussed in the next chapter.

In order to simplify the timetable-based transit network, we made some as-

sumptions in advance:

Assumption 3.1: There is no congestion in the transit system.

Since there is no congestion in the transit system, there should be no delay

during all journeys. Thus we could make the following assumption:

Assumption 3.2: All transit vehicles arrive at or depart from each station

accordingly to the timetable.

To transfer from one transit route to another transit route at the same physical

location, it would take a passenger a certain amount of time to alight and board.

To simplify this situation, we assume that

Assumption 3.3: The time to alight a transit vehicle and then board an-

other transit vehicle immediately is constant.

Assumption 3.4: All passengers�origins and destinations are transit sta-

tions.

19

20

Table 3.1. Nomenclature for the basic timetable information problem

A set of arcs in transit network G
E set of arcs in timetable-based network ~G
ED set of non-stop arcs in timetable-based network ~G
EX set of route-transfer arcs in timetable-based network ~G
G transit network; G = (N;A)
~G timetable-based network; ~G = (V;E)
K the number of line routes in G
N set of nodes in transit network G
Q maximum number of RFk, k = 1; :::; K
Rk the arc sequence in Route k in G, k = 1; :::; K
RF k the frequency of dispatching transit vehicle in Rk
RSi set of line route segments that are associated with node i, i 2 N
RSli the lth line route segment in RSi, l = 1; :::; jRSij
RSAi set of line route segments that arrive at node i, i 2 N
RSDi set of line route segments that depart from node i, i 2 N
TRi the modi�cation of TRSi with some consecutive duplicated times removed
TRSi set of times that line route segments in RSi take place in node i, i 2 N
TRSli the time that the route segment RSli take place in node i, i 2 N
Txi the time to alight a transit vehicle and then board another transit vehicle
V set of jN j groups of nodes in timetable-based network ~G
Vd a node group composed by a set of jTRdj copies of destination node d, d 2 N
Vi a node group composed by a set of jTRij copies of node i, i 2 N
Vj a node group composed by a set of jTRjj copies of node j, j 2 N
Vo a node group composed by a set of jTRoj copies of origin node o, o 2 N
d requested destination of user query
e an arc in ~G, e 2 E
i; j node in transit network G; i; j 2 N
k the index of line route in transit network G
l the ordinal number of line route segment in transit network G
m the physical location of the origin of a line route segment RSli in RSi
n the physical location of the destination of a line route segment
o requested origin of user query
r the index of the route that passes node i
t the arrival or departure time associated with a line route segment
to intended departure time of user query
u; v node in timetable-based network ~G, u; v 2 V
vd origin node in transit network, vd = (d; r��; TRSl��d; Txd) 2 Vd
vo destination node in transit network, vo = (o; r�; TRSl�o; Txo) 2 Vo
wd pseudo destination constructed in algorithm EAB
wo pseudo origin constructed in algorithm EAB
y number of queries with unique OD pairs
� the origin of a non-stop arc in timetable-based network ~G
�̂ the origin of a route-transfer arc in timetable-based network ~G
� the destination of a non-stop arc in timetable-based network ~G
�̂ the destination of a route-transfer arc in timetable-based network ~G

21

Figure 3.1. A simple transit network

3.1. Spatial Data and Temporal Data

Let digraph G = (N;A) represent a transit network where N denotes the set

of nodes and A denotes the set of arcs. A node in N represents some physical

location where a transit vehicle can stop to pick up passengers, such as bus stop,

port, or train station. Each node in N belongs to at least one line route. A

line route is a set of nodes which transfer is not required to travel between them.

For example, in Figure 3.1, we can take Route 1 to travel from node 1 to node 3

without transfer. Thus Route 1 is a line route. A directed arc (i; j) 2 A represents

a direct connection (i.e. non-stop route segment) from node i to node j in a line

route. Suppose there are K line routes in G, and Rk records the arc sequence in

Route k for k = 1; :::; K. The number of segments in Rk equals to jRkj. Take

Figure 3.1 for example, there are 4 nodes and 5 arcs, where Route 1 is composed

by arc (1; 3), Route 2 by arcs (1; 3)�and (3; 4), Route 3 by arc (1; 2), and Route

4 by arc (2; 4), respectively. Thus R1 = [(1; 3)], R2 = [(1; 3)�; (3; 4)], R3 = [(1; 2)],

and R4 = [(2; 4)]. These topological connection relations can be stored as spatial

data in a table shown as Table 3.2. Note the presence of parallel arcs (e.g. (1; 3)

and (1; 3)� in Figure 3.1) in the transit network; there is often more than one line

routes between two stops.

To calculate the quickest path, one further requires the timetable information,

referred as the temporal data. If two line routes with same arc sequence have

22

Table 3.2. Line route information

Segment No. Route No. Route Segment
1 Route 1 : Node 1 ! Node 3
2 Route 2 : Node 1 ! Node 3
3 : Node 3 ! Node 4
4 Route 3 : Node 1 ! Node 2
5 Route 4 : Node 2 ! Node 4

di¤erent timetables, they should be taken as a di¤erent line routes. A timetable

consists of data concerning nodes, line routes, and the departure and arrival times

of the transit vehicles. Let RFk denote the frequency of Rk (i.e. how often is a

transit vehicle dispatched in a line route) and RSi = RSDi [RSAi be all the

line route segments associated with node i, where RSDi and RSAi represent the

sets of line route segments that depart from and arrive at node i, respectively.

For each route segment RSli, l = 1; :::; jRSij associated with node i 2 N , we

record TRSli as the time that the route segment RS
l
i takes place in node i. Thus

jTRSij = jRSij = jRSDij + jRSAij. With timetable information embedded,

di¤erent arrival and departure times for a node in a line route will create di¤erent

line route segments. For example, referring to Table 3.2 and Table 3.3, there are 9

line route segments associated with node 1, which are (m;n; r; t) = [(1, 3, 1, 8:01),

(1, 3, 1, 8:11), (1, 3, 1, 8:21), (1, 3, 2, 8:00), (1, 3, 2, 8:15), (1, 3, 2, 8:30), (1, 2,

3, 8:05), (1, 2, 3, 8:15), (1, 2, 3, 8:25)] where m is the origin of each line route

segment, n is the origin of each line route segment, r is the index of line route,

and t is the departure or arrival associated with the line route segment.

To further simplify the problem, we assume that for any consecutive line

route segments (i�; i) and (i; i��) on Rk, the arrival of (i�; i) and departure of (i; i��)

happens at the same time at node i. As a result, we can remove some con-

secutive duplicated times in the vector TRSi when node i is an intermediate

node in Rk, and save the modi�ed vector as TRi. Note that jTRSij = jTRij +P
k:node i is an intermidate node in Rk

RFk, since each time when a route passes through

23

Table 3.3. Timetable information for each route

Route 1 Route 2 Route 3 Route 4
Node 1 Node 3 Node 1 Node 3 Node 4 Node 1 Node 2 Node 2 Node 4

1 8:01 8:21 8:00 8:23 8:30 8:05 8:15 8:00 8:15
2 8:11 8:31 8:15 8:38 8:45 8:15 8:25 8:14 8:29
3 8:21 8:41 8:30 8:53 9:00 8:25 8:35 8:28 8:43

node i, either its arrival or departure time will be doubly counted in jTRSij. Fur-

thermore, the departure time of each line route segment is always later than or

equal to the preceding arrival time (except the �rst one, which has no preceding

arrival time); that is TRSli � TRSl�i if l < l�. Thus any passenger alight a line route

at some intermediate node will not be able to take any earlier dispatch at the same

node. To comprehend more thoroughly, let�s look at the following example.

Table 3.3 is the timetable for the simple transit network in Table 3.2, where

all routes have three departures (i.e. RFk = 3 for k = 1; 2; 3; 4). Node 1 has 9

departure line route segments and 0 arrival line route segments, thus jRSD1j = 9,

jRSA1j = 0, and jTRS1j = jTR1j = [8:00, 8:01, 8:05, 8:11, 8:15, 8:15, 8:21, 8:25,

8:30]. Similarly, jRSD2j = 3, jRSA2j = 3, and jTRS2j = jTR2j = [8:00, 8:14, 8:15,

8:25, 8:28, 8:35]; jRSD3j = 3, jRSA3j = 6, jTRS3j = [8:21, 8:23, 8:23, 8:31, 8:38,

8:38, 8:41, 8:53, 8:53], and jTR3j = [8:21, 8:23, 8:31, 8:38, 8:41, 8:53]; jRSD4j = 0,

jRSA4j = 6, and jTRS4j = [8:15, 8:29, 8:30, 8:43, 8:45, 9:00]. Since RFk = 3 and

node 3 is an intermediate node in R2, 8:23, 8:38, and 8:53 are duplicated in TRS3.

3.2. Construction of a Basic Timetable-based Network

To calculate the itinerary with the shortest travel time in a transit network,

one requires incorporating the temporal information into the transit network. To

this end, here we propose a preprocessing algorithm to construct a time-space

network called the basic timetable-based network, denoted by ~G = (V;E), where

V is a set of jN j groups of nodes and E = ED[EX consists of the non-stop arcs

24

(ED, arcs that are in the same line route) and route-transfer arcs (EX, arcs that

connect di¤erent line routes).

A node group Vi � V for each i 2 N is composed by a set of jTRij copies

of node i 2 N , where each copy corresponds to a speci�c time associated with a

line route segment connecting i. Thus jV j =
P

i2N jTRij. For our convenience,

four tuples, (i; r; TRSli; Txi), are used to describe each node v 2 V in the basic

timetable-based transportation network, where i corresponds to a physical location

of node i 2 N , r represents the index of the route that passes i, TRSli records

the time of the lth route segment in RSi arriving at or departing from node i

(e.g. 8:15), and Txi is the time to alight a transit vehicle and then board another

transit vehicle (e.g. 2 minutes) set by the users.

Each non-stop arc (�; �) 2 ED represents each line route segment in
S
i2N RSi,

and its end nodes correspond to the end nodes of that line route segment at a

speci�c time. That is, if � 2 Vi and � 2 Vj, then i 6= j. Furthermore, jEDj =P
i2N jRSij. The orientation for a non-stop arc follows the sequence of the nodes

appeared in its corresponding line route segment. Thus a non-stop arc is directed

from a node of earlier time to a node of later time, and we set its length to be the

duration of its corresponding line route segment, or in other words, the di¤erence

in time on its end nodes. On the other hand, each route-transfer arc (�̂; �̂) 2 EX

connects two nodes of the same physical location (i.e. if �̂ 2 Vi and �̂ 2 Vj,

then i = j) but di¤erent times, as long as the time di¤erence of end nodes does

not exceed the time for route change. In particular, for each route-transfer arc

(�̂; �̂) 2 EX where �̂ = (i; r1; TRS
l1
i ; Txi) and �̂ = (i; r2; TRS

l2
i ; Txi) correspond

to some physical location i 2 N , its orientation directs from u to v and its length

can be set as TRSl2i � TRSl1i , which is greater than or equal to Txi. Therefore,

the number of route-transfer arcs connecting nodes in Vi � V is at most O(jVij2),

and thus jEXj = O(
P

i2N jVij
2).

25

Now we give steps of our preprocessing algorithm CBTBN (Constructing the

Basic Timetable-based Network) as follows:

Step 1: Read the spatial data (e.g. Table 3.2) and temporal data (e.g.

Table .3.3), store data in N;A;RS;RSD;RSA; TRS; TR.

Step 2: For each node i 2 V , we store each node the de�ned four tuples

(i; r; TRSli; Txi).

Step 3: Construct each non-stop arc (�; �) 2 ED, using V and RS.

Step 4: Construct each route-transfer arc (�̂; �̂) 2 EX, using V .

Since
P

i2N jTRij = O(
P

i2N jRSij) = O(
P

k=1;:::;K RFk jRkj) = O(KQ jN j),

where Q = maxk=1;:::;K RFk, we can derive that jV j =
P

i2N jTRij = O(KQ jN j)

and jEj = jEDj + jEXj =
P

i2N jRSij + O(
P

i2N jVij
2) = O(KQ jN j + jN j2),

which means the size of ~G is a polynomial function of the size of G (i.e. jN j) and

the input temporal data (i.e. K and Q). In other words, algorithm CBTBN can

construct a basic timetable-based network in time polynomial to the input data

sizes jN j. Moreover, each arc in ~G always directs from a node of earlier time to a

node of later time, which means ~G is an acyclic diagram.

3.3. Query and Solution Method on the Basic Timetable-based

Network

In this section, we design an algorithm to solve the earliest arrival problem on

the basic timetable-based network, and then demonstrate this procedure with the

simple transit network shown in Figure 3.1. Since the timetable-based network is

acyclic, we can apply topological-ordering-based algorithms to solve the shortest

path problem.

3.3.1. Procedures

Depending on the locations of the requested origin o and destination d, as well

as the starting time to of the query, we would like to identify a feasible itinerary

26

of the minimum travel time from o to d in G. Here we give an algorithm called

EAB (stands for Earliest Arrival for Basic timetable-based network) with steps

as follows:

Step 1: Read the basic timetable-based network ~G, as well as all the related

data structures.

Step 2: Read the indices of the requested origin o and destination d, and

the starting time to.

Step 3: For each (u; v) 2 E, where u = (i; r; TRSli; Txi) with TRS
l
i < to,

remove it from E.

Step 4: Remove those route-transfer arcs whose both end nodes are in Vo

or Vd.

Step 5: Construct a pseudo origin wo, a pseudo destination wd, arti�cial

arcs (wo; vo) for each node vo = (o; r�; TRSl�o; Txo) 2 Vo with nonnegative

length equal to TRSl�o < to, and arti�cial arcs (vd; wd) with zero length

for each node vd = (d; r��; TRSl��d; Txd) 2 Vd with TRSl��d � to.

Step 6: Solve a shortest path from wo to wd in ~G using any shortest path

algorithm.

Step 7: Output the calculated shortest path, which corresponds to the

quickest itinerary as requested.

In particular, based on the basic timetable-based network ~G, Step 3 �rst elim-

inates arcs that are too early for the user; Step 4 removes those route-transfer arcs

inside the node groups corresponding to o and d since one can only changes line

routes at intermediate nodes but not the origin and destination; Step 5 connects

the pseudo origin and pseudo destination to their corresponding nodes that serve

as the start and end of the request itinerary. At this moment, algorithm EAB

has already incorporated the query information into the modi�ed basic timetable-

based network. Since the length of each arc in the modi�ed basic timetable-based

network either represents the duration of a line route segment (for a non-stop arc),

27

the time to transfer between line routes (for a route-transfer arc), or the waiting

time before boarding a transit vehicle (for an arti�cial arc connecting to nodes

in Vo), a shortest path in the modi�ed basic timetable-based network is thus an

itinerary with the shortest travel time from o to d starting from time to.

Since the arti�cial arcs added to ~G also direct from nodes of earlier time

to nodes of later time, the modi�ed basic timetable-based graph is still acyclic.

For seeking a shortest path in an acyclic diagram of jV j nodes and jEj arcs,

the topological ordering algorithm [1] can be modi�ed to solve a shortest path

in O(jEj) time, which is theoretically the most e¢ cient since any shortest path

algorithm takes at least
(jEj) time to read the input network. To our surprise,

the point of using a topological ordering algorithm to seek a shortest path in

a time-space network seems to have been neglected in the literatures. Most of

the related researches exploit variants of the Dijkstra�s algorithm, and that takes

O(jEj+ jV j log jV j) time by Fredman and Tarjan [11]. Empirically speaking, the

results of the computational experiments conducted by Cherkassky et al. [6] and

Wang [49] also indicate that topological-ordering-based algorithms such as the

algorithms by Goldberg and Radzik [14] and Wang et al. [50] are more e¢ cient

than variants of Dijkstra�s algorithm to solve shortest paths in an acyclic diagram.

For solving the shortest path itinerary problems for multiple (say, y > 1)

OD pairs, we only need to construct the basic timetable-based network once and

repeats Step 2 through Step 7 for y times, rather than constructing the basic

timetable-based network from the scratch for y times. Furthermore, such a prob-

lem is also a good practice for applying the multiple pairs shortest path algorithm

by Wang et al. [50], which is designed for solving shortest paths for multiple

OD pairs on a network of �xed topology (in our case, the basic timetable-based

network).

28

Figure 3.2. A timetable-based transportation network

3.3.2. An Illustrative Example

To demonstrate the formulation of our basic timetable-based transportation net-

work, consider a transit network consisted of four transit routes and four nodes

as shown in Figure 3.1 and Table 3.2. Table 3.3 gives the timetable of this transit

system.

In this example, if a transfer is needed at any node, a two-minute time period is

required. In other words, Txi = 2 for each node i 2 N . Suppose that a passenger

plans to travel from node 1 to node 4 with a planned departure time of 8:10.

Then, our algorithm EAB eliminates unquali�ed arcs from the basic timetable-

based network that has been stored in the memory, adds pseudo nodes and arti�cial

arcs to construct a modi�ed basic timetable-based network as shown in Figure 3.2,

and solve a shortest path from the pseudo origin to the pseudo destination. In

this case, the itinerary with the minimum travel time will be starting from node

1, taking the bus of route 3 on 8:15, getting o¤ the bus at node 2 on 8:25, taking

29

Table 3.4. Nodes information of basic timetable-based network

S1 (1, 2, 8:00, 2) S10 (2, 4, 8:00, 2) S16 (3, 1, 8:21, 2) S22 (4, 4, 8:15,2)
S2 (1, 1, 8:01, 2) S11 (2, 4, 8:14, 2) S17 (3, 2, 8:31, 2) S23 (4, 4, 8:29,2)
S3 (1, 3, 8:05, 2) S12 (2, 3, 8:15, 2) S18 (3, 1, 8:31, 2) S24 (4, 2, 8:30,2)
S4 (1, 1, 8:11, 2) S13 (2, 3, 8:25, 2) S19 (3, 2, 8:38, 2) S25 (4, 4, 8:43,2)
S5 (1, 2, 8:15, 2) S14 (2, 4, 8:28, 2) S20 (3, 1, 8:41, 2) S26 (4, 2, 8:45,2)
S6 (1, 3, 8:15, 2) S15 (2, 3, 8:35, 2) S21 (3, 2, 8:53, 2) S27 (4, 2, 9:00,2)
S7 (1, 1, 8:21, 2)
S8 (1, 3, 8:25, 2)
S9 (1, 2, 8:30, 2)

the bus of route 4 on 8:28, and arriving at node 4 on 8:43. Table 3.4 demonstrates

the information stored in each node.

3.4. Computational Experiments

This section summarizes our computational results of basic timetable infor-

mation problem. After introducing the implementation settings, datasets from

Taipei transit system will be used for the implementations. We will compare two

implementation of shortest path algorithms: topological ordering algorithm, and

Dijkstra�s algorithm.

3.4.1. Settings and Problem Sets for the Implementation

All of our computational experiments are conducted using Microsoft Visual Studio

2005 on a Acer Aspire machine with an Intel Core 2 Duo processor at 1866 MHz

and 2039 MB RAM running Microsoft Windows XP SP2.

We test our implementation on problem sets based on the bus datasets obtained

from China Engineering Consultants Incorporation (CECI) and MRT datasets

obtained from Taipei Rapid Transit Corporation (i.e. Taipei Metro). The bus

datasets consists of bus route information and bus stop locations. The MRT

datasets consists of MRT station location. With the locations of bus stops and

MRT stations, we could estimate the distance between stops and stations. Ac-

cording to Institute of Transportation, MOTC [20], the average speed for a bus

in Taipei is 22.88 kilometer per hour, and the average walking speed for a Taipei

30

pedestrian is 4 kilometer per hour. With the average travel time between MRT

station provided by Taipei Metro, we could estimate the length (travel time) of

arcs in Taipei transit system.

Because Taipei transit system does not obey �xed time schedules in reality, we

generate timetables for each bus stop or MRT stations. We assume that Taipei

transit system operates from 8 a.m. to 10 p.m.; in other words, the earliest

available time for bus or MRT service is 8 a.m. and the last possible time for a

passenger to board a bus or MRT train is 10 p.m.. The service intervals for each

line route are randomly-generated values between 10 minutes and 30 minutes.

3.4.2. Algorithmic Running Time Comparison

We select 5 problem sets for computational experiments. Problem set P1 consists

of 139 line routes and 3392 transit stations. Problem set P2 consists of 160 line

routes and 3732 transit stations. Problem set P3 consists of 187 line routes and

4117 transit stations. Problem sets P4 consists of 202 line routes and 4240 transit

stations. Problem set P5, the complete network of Taipei transit system, consists

of 336 line routes and 5451 transit stations. The number of nodes for the original

transit network, the number of nodes for the basic timetable-based network, and

the time to construct the basic timetable-based network are summarized in Table

3.5. The time to construct the network increases as the network size increases.

For each problem set, we select 10 groups of OD pairs. In each OD groups,

there are 100 OD pairs with approximately same Euclidean distance. In addition,

we conduct experiment on 5000 OD pairs with origins and destinations randomly

selected. Each OD pair was checked by Depth-First Search (DFS) to assure feasible

solutions before applying topological ordering algorithm. The unit of time for

performance comparison is central processing unit time (CPU time). CPU time

is the amount of time that a computer program consumes in processing central

31

Table 3.5. Time to construct basic timetable-based networks

Set Routes Nodes/Arcs (original) Nodes/Arcs(expanded) Time

P1 139 3392 / 11001 152317 / 1061154 22391
P2 160 3732 / 13183 159627 / 1122708 25610
P3 187 4117 / 14892 177180 / 1397623 27847
P4 202 4240 / 15854 180333 / 1650558 30359
P5 336 5451 / 25736 232613 / 2033405 41908

Table 3.6. Relative performance on �ve problem sets with randomly
selected OD pairs

Set DIJ TO SPD (=DFS+TOAD) �TD SPB (=BFS+TOAB) �TB
P1 3938 2159 1057 (=610+447) 51.0% 1043 (=617+426) 51.7%
P2 4257 2438 1150 (=658+492) 52.6% 1132 (=674+458) 53.6%
P3 4405 2557 1265 (=736+529) 50.5% 1226 (=743+483) 52.1%
P4 4352 2612 1277 (=735+542) 51.1% 1255 (=755+500) 52.0%
P5 5270 2963 1425 (=812+613) 51.9% 1383 (=814+568) 53.3%
time unit in CPU click �TD = (TO � SPD)/TO � 100% �TB = (TO � SPB)/TO � 100%

processing unit (CPU) instructions. The CPU time is often measured in clock

ticks and is thereby used as a point of comparison for CPU usage of a program.

Two shortest path algorithms are implemented for computational experiments.

The �rst algorithm is Dijkstra�s algorithm with binary heap, denoted as DIJ. The

second algorithm is a topological-ordering-based algorithm, denoted as TO. The

results for problem set 5, the complete Taipei transit system, are summarized

in Table 3.7 (SPD, DFS, TOAD, SPB, BFS, TOAB, �TD and �TB will be

discussed in section 3.5). As for the computational performance on 5000 randomly

selected OD pairs, the results are presented in Table 3.6. Results for other problem

sets are shown in Appendix A.

We notice that topological-ordering-based algorithm performs better than Dijk-

stra�s algorithm on basic timetable-based network. The reason why topological-

ordering-based algorithm performs better than Dijkstra�s algorithm is that the

topological ordering algorithm [1] can be modi�ed to solve a shortest path in

O(jEj) time while Dijkstra�s algorithm takes O(jEj + jV j log jV j) time at best

32

[11]. Generally, the result could be obtained within seconds in real time for

topological-ordering-based algorithm.

3.5. Speed-up Techniques

We have successfully implemented two algorithms, topological-ordering-based

algorithm and Dijkstra�s algorithm, to solve basic timetable information problem.

The computational e¢ ciency is reasonable on a personal computer (PC). How-

ever, in order to operate on a mobile device, such as cellular phone or PDA, the

performance of our current solution may not be e¢ cient enough due to inferior

CPU or less memory space equipped with mobile device. Facing these limitations,

some speed-up techniques may be necessary.

One proposed speed-up technique is to �nd a feasible solution through DFS be-

fore applying shortest path algorithm, denoted as SPD. By �nding a feasible, but

not necessarily the shortest, solution, we could set a boundary on our searching.

Since the shortest path should have a cost lower than or equal to any feasible solu-

tion, we could eliminate the nodes that operate later the sum of intended departure

time and the cost of feasible solution obtained through DFS. The complexity is

the same, but the searched network size could be potentially much smaller. How-

ever, based on the nature of the timetable-based network, we can use Breadth-�rst

Search (BFS) to �nd a feasible solution slightly more e¢ ciently. Since a passenger

will not transfer from one line route to another more than three times often accord-

ing to our computational results, the feasible solution obtained from BFS could

potentially be closer to the optimal solution than the feasible solution obtained

from DFS. Theoretically, BFS may take longer to �nd a feasible solution than

DFS but may eliminate more nodes through feasible solution closer to optimal

solution. The size of network is smaller after applying BFS and thus the shortest

path algorithm can �nd the optimal solution faster. The speed-up technique using

33

BFS to �nd a feasible solution before applying shortest path algorithm is denoted

as SPB.

Another proposed speed-up technique is �nding the solution with longest travel

time in the multimodal timetable-based network, denoted as SPL. If the longest

possible travel time is known, we could eliminate the nodes that operate later

than the sum of intended departure time and the longest possible travel time.

By applying these techniques, the complexity remains the same, but the searched

network size could be smaller.

We hereby apply SPD and SPB on our 5 problem sets. Table 3.7 summarizes

the implementation results of 10 groups of OD pairs in problem set 5. Results on

other problem sets are shown in Appendix A. In Table 3.7, DIJ is the compu-

tational time for Dijkstra�s algorithm, TO is the average computational time for

topological ordering algorithm, DFS is the computational time to conduct DFS

for an feasible solution and then set the boundary accordingly, TOAD is the com-

putational time for topological ordering algorithm after the speed-up technique is

applied, and SPD is the total computational time with speed-up technique, i.e.

the total of DFS and TOAD. BFS is the computational time to conduct BFS for

an feasible solution and then set the boundary accordingly, TOAB is the com-

putational time for topological ordering algorithm after the speed-up technique is

applied, and SPB is the total computational time with speed-up technique, i.e.

the total of BFS and TOAB. In addition, we list �TD, the percentage of time

improvement from plain topological ordering algorithm to topological ordering al-

gorithm with speed up technique using DFS (i.e. �T% = (TO � SPD)/TO �

100%) and �TB, the percentage of time improvement from plain topological or-

dering algorithm to topological ordering algorithm with speed up technique using

BFS (i.e. �T% = (TO � SPB)/TO � 100%) in the table.

34

Table 3.7. Relative performance on problem set 5

OD Group DIJ TO SPD (=DFS+TOAD) �TD SPB (=BFS+TOAB) �TB
1 4436 2635 1251 (=711+540) 52.5% 1224 (=725+499) 53.5%
2 4390 2599 1241 (=708+533) 52.3% 1233 (=711+522) 52.5%
3 4552 2724 1286 (=728+588) 52.8% 1310 (=736+574) 51.9%
4 4678 2882 1366 (=777+589) 52.6% 1336 (=778+558) 53.6%
5 4973 3169 1480 (=837+643) 53.3% 1458 (=860+598) 54.0%
6 5314 3506 1637 (=924+713) 53.3% 1602 (=938+664) 54.3%
7 5296 3486 1634 (=922+712) 53.1% 1639 (=948+691) 53.0%
8 5311 3518 1643 (=927+716) 53.3% 1616 (=942+674) 54.1%
9 5668 3862 1803 (=1019+784) 53.3% 1742 (=1022+720) 54.9%
10 6239 4430 2058 (=1161+897) 53.5% 2048 (=1192+856) 53.8%

time unit in CPU click �TD = (TO � SPD)/TO � 100% �TB = (TO � SPB)/TO � 100%

Table 3.8. Normalization of relative performance on problem set 5

OD Group DIJ TO SPD (=DFS +TOAD) SPB (=BFS + TOAB)

1 3.54 2.11 1.00 (=0.57 + 0.43) 0.98 (=0.58 + 0.40)

2 3.54 2.10 1.00 (=0.57 + 0.43) 0.99 (=0.57 + 0.42)

3 3.54 2.12 1.00 (=0.57 + 0.43) 1.02 (=0.57 + 0.45)

4 3.42 2.11 1.00 (=0.57 + 0.43) 0.98 (=0.57 + 0.41)

5 3.36 2.14 1.00 (=0.57 + 0.43) 0.99 (=0.57 + 0.40)

6 3.25 2.14 1.00 (=0.56 + 0.44) 0.98 (=0.57 + 0.41)

7 3.24 2.13 1.00 (=0.56 + 0.44) 1.00 (=0.58 + 0.42)

8 3.23 2.14 1.00 (=0.56 + 0.44) 0.98 (=0.57 + 0.41)

9 3.14 2.14 1.00 (=0.57 + 0.43) 0.97 (=0.57 + 0.40)

10 3.03 2.15 1.00 (=0.56 + 0.44) 1.00 (=0.58 + 0.42)

By applying our �rst proposed speed-up technique, the average running time

improves approximately 53% on problem set 5. By applying our speed-up tech-

nique using BFS, the average running time improves approximately 55%. We

further normalize the results for each OD group in problem set 5 on the basis of

SPD and summarize in Table 3.8. The ratio between time usage of DFS and that

of TOAD or BFS and that of TOAB remains approximately constant throughout

all problem sets.

3.6. Summary

In this chapter, we solve the basic timetable information problem. In addition

to the line route information of a transit system, our problem takes timetable

35

into consideration. In order to incorporate timetable information, a new network,

basic timetable-based network, is constructed through algorithm CBTBN. After

constructing the basic timetable-based network, we then apply algorithm EAB

with implementations of topological ordering algorithm and Dijkstra�s algorithm.

By conducting computational experiments on datasets from Taipei transit net-

work, the results have shown reasonable e¢ ciency on PC. Our computational ex-

periments also support the theoretical projection that topological ordering algo-

rithm should perform better than Dijkstra�s algorithm. Furthermore, we propose

some speed-up techniques to improve computational e¢ ciency. The results of

applying our �rst proposed speed-up technique, SPD, show a 53% running time

improvement. and the results of applying speed-up technique using BFS, SPB,

show a 54% running time improvement. Although the computational results indi-

cate that SPB has a better e¢ ciency than SPD, the improvement attributes the

nature of Taipei transit system. Whether SPB has better computational e¢ ciency

than SPD or not requires further validation. The actual performance of mobile

device remains unknown.

CHAPTER 4

METHODOLOGIES ON A MULTIMODAL TIMETABLE

INFORMATION PROBLEM WITH WALKING

TRANSFER

We then consider a more complicated timetable problem in which users select

the origin transit station, destination transit station, and intended departure time.

The origin and destination are not limited to transit stations, and walking is

permitted as a means of transportation.

To simplify the multimodal timetable information problem with walking trans-

fer, some assumptions are made:

Assumption 4.1: There is no congestion in the transit system.

Since there is no congestion in the transit system, there should be no delay

during all journeys. Thus we could make the following assumption:

Assumption 4.2: All transit vehicles arrive at or depart from each node

accordingly to the timetables.

To transfer from one transit route to another transit route at the same physical

location, it would take a passenger a certain amount of time to alight and board.

To simplify this situation, we assume that

Assumption 4.3: Waiting time for route transfer at the same physical lo-

cation is constant.

Since walking is allowed in this problem, we further assume that

Assumption 4.4: The walking speed remains the same for every traveler.

36

37

However, the nature of private road network (for walking) is very di¤erent from

that of transit network. In order to prevent details of private road network from

increasing computation complexity, we assume that

Assumption 4.5: The walking distance from one node to another is de�ned

as the Euclidean distance between those two nodes.

4.1. Spatial Data and Temporal Data

Let digraph G = (N;A) represent a transit network where N denotes the set

of nodes and A denotes the set of arcs. A node in N represents some physical

location where a transit vehicle can stop to pick up passengers, such as bus stop,

port, or train station. Each node in N belongs to at least one line route. A line

route is a set of nodes which transfer is not required to travel between them. For

example, in Figure 4.1, we can take Route 1 to travel from node 1 to node 3 without

transfer. Thus Route 1 is a line route. A directed arc (i; j) 2 A represents a direct

connection (i.e. non-stop route segment) from node i to node j in a line route.

Suppose there are K line routes in G, and Rk records the arc sequence in Route

k for k = 1; :::; K. The number of segments in Rk equals to jRkj. Take Figure 4.1

for example, there are 6 nodes and 4 arcs, where Route 1 is composed by arc (1; 2)

and (2; 3), Route 2 by arcs (4; 5) and (5; 6), respectively. Thus R1 = [(1; 2); (2; 3)]

and R2 = [(4; 5); (5; 6)]. These topological connection relations can be stored as

part of spatial data in a table shown as Table 4.2.

Notice that in Figure 4.1, we demonstrate that a transit network with multiple

line routes can be decomposed into multiple layers of network, in which each

layer consists of one line route. In other words, if there are K line routes in

the transit network G, then G can be decomposed into K layers (for the transit

network in Figure 4.1, there are two layers, GBR1 and GBR2). This decomposition

38

Table 4.1. Nomenclature for the multimodal timetable information
problem with walking transfer

A set of arcs in transit network G
C set of walking distance in timetable-based network ~G
E set of arcs in timetable-based network ~G
ED set of non-stop arcs in timetable-based network ~G
EX set of route-transfer arcs in timetable-based network ~G
EW set of walk-transfer arcs in timetable-based network ~G
G transit network; G = (N;A)
~G timetable-based network; ~G = (V;E)
K the number of line routes in G
N set of nodes in transit network G
Rk the arc sequence in Route k in G, k = 1; :::; K
RF k the frequency of dispatching transit vehicle in Rk
RSi set of line route segments that are associated with node i, i 2 N
RSli the lth line route segment in RSi, l = 1; :::; jRSij
RSAi set of line route segments that arrive at node i, i 2 N
RSDi set of line route segments that depart from node i, i 2 N
TRi the modi�cation of TRSi with some consecutive duplicated times removed
TRSi set of times that line route segments in RSi take place in node i, i 2 N
TRSli the time that the route segment RSli take place in node i, i 2 N
TW ij walk time between node i and j, i; j 2 N
Txi the time to alight a transit vehicle and then board another transit vehicle
V set of jN j groups of nodes in timetable-based network ~G
Vd a node group composed by a set of jTRdj copies of destination node d, d 2 N
Vi a node group composed by a set of jTRij copies of node i, i 2 N
Vo a node group composed by a set of jTRoj copies of origin node o, o 2 N
cij the walking distance between node i and j, i; j 2 N
a; b the index of line route in transit network G
d requested destination of user query
i; j node in transit network G; i; j 2 N
k the index of line route in transit network G
l the ordinal number of line route segment in transit network G
m the physical location of the origin of a line route segment RSli in RSi
n the physical location of the destination of a line route segment
o requested origin of user query
r the index of the route that passes node i and j, i; j 2 N
s the walking speed in transit network G
t the arrival or departure time associated with a line route segment
to intended departure time of user query
ts speci�ed acceptable walking range
u; v node in timetable-based network ~G, u; v 2 V
vd origin node in transit network, vd = (d; r��; TRSl��d; Txd) 2 Vd
vo destination node in transit network, vo = (o; r�; TRSl�o; Txo) 2 Vo
wd pseudo destination constructed in algorithm EAM
wo pseudo origin constructed in algorithm EAM
�; � the origin/destination of a non-stop arc in timetable-based network ~G
�̂; �̂ the origin/destination of a route-transfer arc in timetable-based network ~G
��; �� the origin/destination of a walk-transfer arc in timetable-based network ~G

39

Figure 4.1. A multimodal transit network and its hierarchical display

Table 4.2. Line route information

Segment No. Route No. Route Segment
1 Route 1 : Node 1 ! Node 2
2 : Node 2 ! Node 3
3 Route 2 : Node 4 ! Node 5
4 : Node 5 ! Node 6

process would create a hierarchical transit network, and thus named Hierarchical

Decomposition Process (HDP).

Another part of spatial data is the walking distance between each node. Based

on Assumption 4.5, the walking distance between two nodes is de�ned as the

Euclidean distance between them. Therefore, the walking distance between each

node can be denoted as cij, i; j 2 N , i 6= j. These walking distances can be stored

as part of spatial data using a table as shown in Table 4.3. Then by setting the

walking speed, the time consumed for each walk segment can be obtained.

To calculate the quickest path, one further requires the timetable information,

referred as the temporal data. If two line routes with the same arc sequence have

40

Table 4.3. Walk distance information

Walk No. Walk Segment Distance
1 Node 1 ! Node 2 : c12
2 Node 1 ! Node 3 : c13
3 Node 1 ! Node 4 : c14
4 Node 1 ! Node 5 : c15
5 Node 1 ! Node 6 : c16
6 Node 2 ! Node 3 : c23
7 Node 2 ! Node 4 : c24
8 Node 2 ! Node 5 : c25
9 Node 2 ! Node 6 : c26
10 Node 3 ! Node 4 : c34
11 Node 3 ! Node 5 : c35
12 Node 3 ! Node 6 : c36
13 Node 4 ! Node 5 : c45
14 Node 4 ! Node 6 : c46
15 Node 5 ! Node 6 : c56

di¤erent timetables, they should be taken as di¤erent line routes. A timetable

consists of data concerning nodes, line routes, and the departure and arrival times

of the transit vehicles. Let RFk denote the frequency of Rk (i.e. how often a

transit vehicle is dispatched in a line route) and RSi = RSDi [RSAi be all the

line route segments associated with node i, where RSDi and RSAi represent the

sets of line route segments that depart from and arrive at node i, respectively.

For each route segment RSli, l = 1; :::; jRSij associated with node i 2 N , we

record TRSli as the time that the route segment RS
l
i takes place in node i. Thus

jTRSij = jRSij = jRSDij + jRSAij. With timetable information embedded,

di¤erent arrival and departure times for a node in a line route will create di¤erent

line route segments. For example, referring to Table 4.2 and Table 4.4, there are 3

line route segments associated with node 1, which are (m;n; r; t) = [(1, 2, 1, 8:01),

(1, 2, 1, 8:11), (1, 2, 1, 8:21)] where m is the origin of each line route segment, n

is the origin of each line route segment, r is the index of line route, and t is the

departure or arrival associated with the line route segment.

To further simplify the problem, we assume that for any consecutive line

route segments (i�; i) and (i; i��) on Rk, the arrival of (i�; i) and departure of (i; i��)

41

Table 4.4. Timetable information for each route

Route 1 Route 2
Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

1 8:01 8:21 8:30 8:00 8:23 8:30
2 8:11 8:31 8:40 8:15 8:38 8:45
3 8:21 8:41 8:50 8:30 8:53 9:00

happens at the same time at node i. As a result, we can remove some con-

secutive duplicated times in the vector TRSi when node i is an intermediate

node in Rk, and save the modi�ed vector as TRi. Note that jTRSij = jTRij +P
k:node i is an intermidate node in Rk

RFk, since each time when a route passes through

node i, either its arrival or departure time will be doubly counted in jTRSij. Fur-

thermore, the departure time of each line route segment is always later than or

equal to the preceding arrival time (except the �rst one, which has no preceding

arrival time); that is TRSli � TRSl�i if l < l�. Thus any passenger alight a line

route at some intermediate node will not be able to take any earlier dispatch at

the same node.

4.2. Construction of a Multimodal Timetable-based Network

To calculate the itinerary with the shortest travel time in a transit network,

one requires incorporating the temporal information into the transit network. To

this end, here we propose a preprocessing algorithm to construct a time-space

network called the multimodal timetable-based network, denoted by ~G = (V;E),

where V is a set of jN j groups of nodes and E = ED [EX [EW consists of

the non-stop arcs (ED, arcs that are in the same line route), route-transfer arcs

(EX, arcs that connect di¤erent line routes), and walk-transfer arcs (EW , arcs

that allow travelers to walk from one node to another).

A node group Vi � V for each i 2 N is composed by a set of jTRij copies of

node i 2 N , where each copy corresponds to a speci�c time associated with a line

route segment connecting i. Thus jV j =
P

i2N jTRij. For our convenience, four

tuples, (i; r; TRSli; Txi), are used to describe each node v 2 V in the multimodal

42

timetable-based transportation network, where i corresponds to a physical location

of node i 2 N , r represents the index of the route that passes i, TRSli records

the time of the lth route segment in RSi arriving at or departing from node i

(e.g. 8:15), and Txi is the time to alight a transit vehicle and then board another

transit vehicle (e.g. 2 minutes) set by the users.

Each non-stop arc (�; �) 2 ED represents each line route segment in
S
i2N RSi,

and its end nodes correspond to the end nodes of that line route segment at a

speci�c time. That is, if � 2 Vi and � 2 Vj, then i 6= j. Furthermore, jEDj =P
i2N jRSij. The orientation for a non-stop arc follows the sequence of the nodes

appeared in its corresponding line route segment. Thus a non-stop arc is directed

from a node of earlier time to a node of later time, and we set its length to

be the duration of its corresponding line route segment, or in other words, the

di¤erence in time on its end nodes. On the other hand, each route-transfer arc

(�̂; �̂) 2 EX connects two nodes of the same physical location (i.e. if �̂ 2 Vi

and �̂ 2 Vj, then i = j) but di¤erent times, as long as the time di¤erence of end

nodes does not exceed the time for route change. In particular, for each route-

transfer arc (�̂; �̂) 2 EX where �̂ = (i; r1; TRS
l1
i ; Txi) and �̂ = (i; r2; TRS

l2
i ; Txi)

correspond to some physical location i 2 N , its orientation directs from u to v

and TRSl1i +Txi � TRSl2i and its length can be set as TRSl2i �TRSl1i . Therefore,

the number of route-transfer arcs connecting nodes in Vi � V is at most O(jVij2),

and thus jEXj = O(
P

i2N jVij
2).

The major di¤erence between the basic timetable-based network introduced

in previous chapter and the multimodal timetable-based network is the addition

of walk-transfer arcs. In the multimodal timetable-based network, travelers are

allowed to walk from one transit station to all other transit stations, and thus there

are walk-transfer arcs between every two nodes with di¤erent physical locations.

Take Figure 4.2 for example. There are two bus routes, Bus Route 1 and Bus

Route 2; from station 1 on Bus Route 1, a passenger has the options to walk

43

Figure 4.2. An illustration of walk-transfer arc

from station 1 to station 2, 3, 4, and 5, which are within the speci�ed walking

range. So each walk-transfer arc (��; ��) 2 EW connects two nodes of di¤erent

physical locations (i.e. if �� 2 Vi and �� 2 Vj, then i 6= j.) and di¤erent times

where the time di¤erence of end node does not exceed the time required to walk

between end nodes, and the length between each node does not exceed the speci�ed

walking range ts. In particular, for each walk-transfer arc (��; ��) 2 EW where �� =

(i; r1; TRS
la
i ; Txi) and �� = (i; r2; TRS

lb
j ; Txj) correspond to physical locations i

and j, where i; j 2 N and i 6= j , and route number a and b, where a; b 2 K, the

distance between locations i and j can be denoted as cij, the speed of walking can

be denoted as s (de�ned as a constant value according to assumption 4.4), the

travel time between i and j by foot can be denoted as TWij where TWij =
jcij j
jsj ,

and its orientation directs from u to v and TRSlai + TWij � TRSlbj .

Now we give steps of our preprocessing algorithm CMTBN (Constructing the

Multimodal Timetable-based Network) as follows:

44

Step 1: Read the spatial data (e.g. Table 4.2 and Table 4.3) and temporal

data (e.g. Table 4.4), store data in N;A;C;RS;RSD;RSA; TRS; TR.

Step 2: Set acceptable walking range ts.

Step 3: For each node i 2 V , we store each node the de�ned four tuples

(i; r; TRSli; Txi).

Step 4: Construct each non-stop arc (�; �) 2 ED, using V and RS.

Step 5: Construct each direct-transfer arc (�̂; �̂) 2 EX, using V .

Step 6: Construct each walk-transfer arc (��; ��) 2 EW , using V , C, and

RS.

4.3. Query and Solution Method on a Multimodal Timetable-based

Network

In this section, we design an algorithm to solve the earliest arrival problem

on the multimodal timetable-based network, and then demonstrate this procedure

with the transit network shown in Figure 4.1. Since the timetable-based network

is acyclic, we can apply topological-ordering-based algorithms to solve the shortest

path problem.

4.3.1. Procedures

Depending on the locations of the requested origin o and destination d, as well as

the starting time to of the query, we would like to identify a feasible itinerary of

the minimum travel time from o to d in G. Here we give an algorithm called EAM

(stands for Early Arrival for Multimodal timetable-based network) with steps as

follows:

Step 1: Read the multimodal timetable-based network ~G, as well as all the

related data structures.

Step 2: Read the indices of the requested origin o and destination d, and

the starting time to.

45

Step 3: For each (u; v) 2 E, where u = (i; r; TRSli; Txi) with TRS
l
i < to,

remove it from E.

Step 4: Remove those route-transfer arcs whose both end nodes are in Vo

or Vd.

Step 5: Construct a pseudo origin wo, a pseudo destination wd, arti�cial

arcs (wo; vo) for each node vo = (o; r�; TRSl�o; Txo) 2 Vo with nonnegative

length equal to (TRSl�o � to), where (TRSl�o � to) �
cwovo
s
, and arti�cial

arcs (vd; wd) with nonnegative length equals to
cvdwd
s

for each node vd =

(d; r��; TRSl��d; Txd) 2 Vd with TRSl��d � to.

Step 6: Solve a shortest path from wo to wd in ~G using any shortest path

algorithm.

Step 7: Output the calculated shortest path, which corresponds to the

quickest itinerary as requested.

In particular, based on the multimodal timetable-based network ~G, Step 3

�rst eliminates arcs that are too early for the user; Step 4 removes those route-

transfer arcs inside the node groups corresponding to o and d since one can only

changes line routes at intermediate nodes but not the origin and destination;

Step 5 connects the pseudo origin and pseudo destination to their corresponding

nodes that serve as the start and end of the request itinerary. Through these

�ve steps, algorithm EAM has already incorporated the query information into

the modi�ed multimodal timetable-based network. Since the length of each arc in

the modi�ed multimodal timetable-based network represents either the duration

of a route segment (for a non-stop arc), the waiting time to transfer routes (for a

direct-transfer arc), the walking time to transfer routes (for a walk-transfer arc),

or the waiting time and walking time to start the itinerary (for an arti�cial arc

connecting to nodes in Vo), a shortest path in the modi�ed multimodal timetable-

based network thus corresponds to an itinerary with the minimal travel time from

o to d starting from time to.

46

Figure 4.3. A multimodal timetable-based transit network

Since the arti�cial arcs added to ~G also direct from nodes of earlier time to

nodes of later time, the modi�ed multimodal timetable-based network remains

acyclic, same as the basic timetable-based network. For seeking a shortest path in

an acyclic diagram of jV j nodes and jEj arcs, the topological ordering algorithm

[1] can be modi�ed to solve a shortest path in O(jEj) time, which is theoretically

the most e¢ cient since any shortest path algorithm takes at least
(jEj) time to

read the input network.

4.3.2. An Illustrative Example

To demonstrate the formulation of our multimodal timetable-based transportation

network, consider a transit network consisted of two transit routes and six nodes

as shown in Figure 4.1 and Table 4.2. Table 4.3 gives the walking time between

each node, and Table 4.4 gives the timetable of this transit system.

47

Table 4.5. Walking time for arti�cial arcs

Segment Time(mins) Segment Time(mins) Segment Time(mins)
o! V1 2 o! V3 121 o! V5 71
o! V2 61 o! V4 11 o! V6 131
V1 ! d 131 V3 ! d 51 V5 ! d 61
V2 ! d 71 V4 ! d 121 V6 ! d 2

Table 4.6. Nodes information of multimodal timetable-based network

S1 (1, 1, 8:01, 2) S7 (3, 1, 8:30, 2) S13 (5, 2, 8:23, 2)
S2 (1, 1, 8:11, 2) S8 (3, 1, 8:40, 2) S14 (5, 2, 8:38, 2)
S3 (1, 1, 8:21, 2) S9 (3, 1, 8:50, 2) S15 (5, 2, 8:53, 2)
S4 (2, 1, 8:21, 2) S10 (4, 2, 8:00, 2) S16 (6, 2, 8:30, 2)
S5 (2, 1, 8:31, 2) S11 (4, 2, 8:15, 2) S17 (6, 2, 8:45, 2)
S6 (2, 1, 8:41, 2) S12 (4, 2, 8:30, 2) S18 (6, 2, 9:00, 2)

In this example, if a transfer is needed at any node, a two-minute waiting time

is required. In other words, Txi = 2 for each node i 2 N . Suppose a passenger

plans to travel from location A to location B with a planned departure time of

8:00. Then, our algorithm EAM eliminates unquali�ed arcs from the multimodal

timetable-based network that has been stored in the memory, adds pseudo nodes

and arti�cial arcs to construct a modi�ed multimodal timetable-based network as

shown in Figure 4.3. The cost (time consumed) between pseudo node and transit

stations are shown in Table 4.5. Table 4.6 demonstrates the information stored in

each node. The algorithm then solves a shortest path from the pseudo origin to

the pseudo destination. In this case, the itinerary with the minimum travel time

will start from origin o on time 8:00, walk for 11 minutes before reaching station

4, wait for 4 minutes at the station, take the bus of route 2 on 8:15, get o¤ the

bus at node 6 on 8:45, walk for another 2 minutes, and then arrive at destination

on 8:47. The total travel time is 47 minutes.

4.4. Computational Experiments

This section summarizes our computational results of multimodal timetable

information problem with walking transfer. After introducing the implementation

48

settings, datasets from Taipei transit system will be used for the implementations.

We will compare two implementation of shortest path algorithms: topological

ordering algorithm, and Dijkstra�s algorithm.

4.4.1. Settings and Problem Sets for the Implementation

All of our computational experiments are conducted using Microsoft Visual Studio

2005 on a Acer Aspire machine with an Intel Core 2 Duo processor at 1866 MHz

and 2039 MB RAM running Microsoft Windows XP SP3.

We test our implementation on problem sets based on the bus datasets obtained

from China Engineering Consultants Incorporation (CECI) and MRT datasets

obtained from Taipei Rapid Transit Corporation (i.e. Taipei Metro). The bus

datasets consists of bus route information and bus stop locations. The MRT

datasets consists of MRT station location. With the locations of bus stops and

MRT stations, we could estimate the distance between stops and stations. Ac-

cording to Institute of Transportation, MOTC [20], the average speed for a bus

in Taipei is 22.88 kilometer per hour, and the average walking speed for a Taipei

pedestrian is 4 kilometer per hour. With the average travel time between MRT

station provided by Taipei Metro, we could estimate the length (travel time) of

arcs in Taipei transit system.

Because Taipei transit system does not obey �xed time schedules in reality,

we generate timetables for each bus stop or MRT station. We assume that Taipei

transit system operates from 8 a.m. to 10 p.m.; in other words, the earliest

available time for bus or MRT service is 8 a.m. and the last possible time for a

passenger to board a bus or MRT train is 10 p.m.. The service intervals for each

line route are randomly-generated values between 10 minutes and 30 minutes.

49

Table 4.7. Time to construct multimodal timetable-based network

Set Routes Nodes/Arcs (original) Nodes/Arcs (expanded) Time

P1 139 3392 / 11001 152317 / 3085427 73653
P2 160 3732 / 13183 159627 / 3820659 93015
P3 187 4117 / 14892 177180 / 4511358 101298
P4 202 4240 / 15854 180333 / 5096710 110960
P5 336 5451 / 25736 232613 / 6551773 138359

4.4.2. Algorithmic Running Time Comparison

We select 5 problem sets for computational experiments. Problem set P1 consists

of 139 line routes and 3392 transit stations. Problem set P2 consists of 160 line

routes and 3732 transit stations. Problem set P3 consists of 187 line routes and

4117 transit stations. Problem sets P4 consists of 202 line routes and 4240 transit

stations. Problem set P5, the complete network of Taipei transit system, consists

of 336 line routes and 5451 transit stations. The number of nodes for the original

transit network, the number of nodes for the basic timetable-based network, and

the time to construct the basic timetable-based network are summarized in Table

4.7. The time to construct the network increases as the network size increases.

For each problem set, we select 10 groups of OD pairs. In each OD groups,

there are 100 OD pairs with approximately same Euclidean distance. In addition,

we conduct experiments on 5000 OD pairs with origins and destinations randomly

selected. Each OD pair was checked by Depth-First Search (DFS) to assure feasible

solutions before applying topological ordering algorithm. The unit of time for

performance comparison is central processing unit time (CPU time). CPU time

is the amount of time that a computer program consumes in processing central

processing unit (CPU) instructions. The CPU time is often measured in clock

ticks and is thereby used as a point of comparison for CPU usage of a program.

Two shortest path algorithms are implemented for computational experiments.

The �rst algorithm is Dijkstra�s algorithm with binary heap, denoted as DIJ. The

second algorithm is a topological-ordering-based algorithm, denoted as TO. The

50

Table 4.8. Relative performance on �ve problem sets with randomly
selected OD pairs

Set DIJ TO SPD (=DFS+TOAD) �TD SPB (=BFS+TOAB) �TB
P1 10569 7503 3495 (=1976+1519) 53.4% 3393 (=1993+1400) 54.7%
P2 10928 7750 3592 (=2026+1566) 53.6% 3598 (=2051+1547) 53.6%
P3 11169 8082 3750 (=2116+1634) 53.6% 3749 (=2153+1596) 53.6%
P4 11321 8294 3748 (=2084+1664) 54.8% 3636 (=2113+1523) 56.1%
P5 11973 8960 4096 (=2281+1815) 54.3% 4007 (=2301+1706) 55.3%
time unit in CPU click �TD = (TO � SPD)/TO � 100% �TB = (TO � SPB)/TO � 100%

results for problem set 5, the complete Taipei transit system, are summarized

in Table 4.9 (SPD, DFS, TOAD, SPB, BFS, TOAB, �TD and �TB will be

discussed in section 4.5). As for the computational performance on 5000 randomly

selected OD pairs, the results are presented in Table 4.8. Results for other problem

sets are shown in Appendix B.

We notice that topological-ordering-based algorithm performs better than Dijk-

stra�s algorithm on basic timetable-based network. The reason why topological-

ordering-based algorithm performs better than Dijkstra�s algorithm is that the

topological ordering algorithm [1] can be modi�ed to solve a shortest path in

O(jEj) time while Dijkstra�s algorithm takes O(jEj + jV j log jV j) time at best

[11]. Generally, the result could be obtained within seconds in real time for

topological-ordering-based algorithm.

4.5. Speed-up Techniques

We have successfully implemented two algorithms, topological-ordering-based

algorithm and Dijkstra�s algorithm, to solve multimodal timetable information

problem. However, in order to operate on a mobile device, such as cellular phone

or PDA, the performance of our current solution may not be e¢ cient enough due

to inferior CPU or less memory space equipped with mobile device. Facing these

limitations, some speed-up techniques may be necessary.

One proposed speed-up technique is to �nd a feasible solution through DFS be-

fore applying shortest path algorithm, denoted as SPD. By �nding a feasible, but

51

not necessarily the shortest, solution, we could set a boundary on our searching.

Since the shortest path should have a cost lower than or equal to any feasible solu-

tion, we could eliminate the nodes that operate later the sum of intended departure

time and the cost of feasible solution obtained through DFS. The complexity is

the same, but the searched network size could be potentially much smaller. How-

ever, based on the nature of the timetable-based network, we can use Breadth-�rst

Search (BFS) to �nd a feasible solution slightly more e¢ ciently. Since a passenger

will not transfer from one line route to another more than three times often accord-

ing to our computational results, the feasible solution obtained from BFS could

potentially be closer to the optimal solution than the feasible solution obtained

from DFS. Theoretically, BFS may take longer to �nd a feasible solution than

DFS but may eliminate more nodes through feasible solution closer to optimal

solution. The size of network is smaller after applying BFS and thus the shortest

path algorithm can �nd the optimal solution faster. The speed-up technique using

BFS to �nd a feasible solution before applying shortest path algorithm is denoted

as SPB.

Another proposed speed-up technique is �nding the solution with longest travel

time in the multimodal timetable-based network, denoted as SPL. If the longest

possible travel time is known, we could eliminate the nodes that operate later

than the sum of intended departure time and the longest possible travel time.

The complexity is the same, but the searched network size could be smaller.

We hereby apply SPD and SPB on our 5 problem sets. Table 4.9 summarizes

the implementation results of 10 groups of OD pairs in problem set 5. Results on

other problem sets are shown in Appendix B. In Table 4.9, DIJ is the compu-

tational time for Dijkstra�s algorithm, TO is the average computational time for

topological ordering algorithm, DFS is the computational time to conduct DFS

for an feasible solution and then set the boundary accordingly, TOAD is the com-

putational time for topological ordering algorithm after the speed-up technique is

52

Table 4.9. Relative performance on problem set 5

OD Group DIJ TO SPD (=DFS+TOAD) �TD SPB (=BFS+TOAB) �TB
1 10126 7032 3223 (=1804+1419) 54.2% 3216 (=1839+1377) 54.3%
2 10478 7377 3387 (=1899+1488) 54.1% 3342 (=1903+1439) 54.7%
3 10748 7647 3499 (=1957+1542) 54.2% 3519 (=1991+1528) 54.0%
4 10994 7899 3614 (=2022+1593) 54.2% 3556 (=2045+1511) 55.0%
5 11345 8244 3775 (=2113+1661) 54.2% 3767 (=2123+1664) 54.3%
6 11773 8672 3966 (=2219+1747) 54.3% 3955 (=2246+1710) 54.4%
7 11850 8758 4001 (=2238+1764) 54.3% 3934 (=2264+1670) 55.1%
8 12235 9135 4169 (=2330+1840) 54.4% 4058 (=2336+1723) 55.6%
9 12562 9465 4327 (=2421+1906) 54.3% 4381 (=2476+1905) 53.7%
10 12908 9807 4474 (=2500+1974) 54.4% 4430 (=2540+1890) 54.8%

time unit in CPU click �TD = (TO � SPD)/TO � 100% �TB = (TO � SPB)/TO � 100%

applied, and SPD is the total computational time with speed-up technique, i.e.

the total of DFS and TOAD. BFS is the computational time to conduct BFS for

an feasible solution and then set the boundary accordingly, TOAB is the com-

putational time for topological ordering algorithm after the speed-up technique is

applied, and SPB is the total computational time with speed-up technique, i.e.

the total of BFS and TOAB. In addition, we list �TD, the percentage of time

improvement from plain topological ordering algorithm to topological ordering al-

gorithm with speed up technique using DFS (i.e. �T% = (TO � SPD)/TO �

100%) and �TB, the percentage of time improvement from plain topological or-

dering algorithm to topological ordering algorithm with speed up technique using

BFS (i.e. �T% = (TO � SPB)/TO � 100%) in the table.

By applying our �rst proposed speed-up technique using DFS, the average

running time improves approximately 53% on problem set 5. By applying our

speed-up technique using BFS, the average running time improves approximately

55%. We further normalize the results for each OD group in problem set 5 on the

basis of SPD and summarize in Table 4.10. The ratio between time usage of DFS

and that of TOAD remains approximately constant throughout all problem sets.

53

Table 4.10. Normalization of relative performance on problem set 5

OD Group DIJ TO SPD (=DFS +TOAD) SPB (=BFS + TOAB)

1 3.14 2.18 1.00 (=0.56 + 0.44) 1.00 (=0.57 + 0.43)

2 3.09 2.18 1.00 (=0.56 + 0.44) 0.99 (=0.56 + 0.42)

3 3.07 2.19 1.00 (=0.56 + 0.44) 1.01 (=0.57 + 0.44)

4 3.04 2.19 1.00 (=0.56 + 0.44) 0.98 (=0.57 + 0.42)

5 3.01 2.18 1.00 (=0.56 + 0.44) 1.00 (=0.56 + 0.44)

6 2.97 2.19 1.00 (=0.56 + 0.44) 1.00 (=0.57 + 0.43)

7 2.96 2.19 1.00 (=0.56 + 0.44) 0.98 (=0.57 + 0.42)

8 2.93 2.19 1.00 (=0.56 + 0.44) 0.97 (=0.56 + 0.41)

9 2.90 2.19 1.00 (=0.56 + 0.44) 1.01 (=0.57 + 0.44)

10 2.89 2.19 1.00 (=0.56 + 0.44) 0.99 (=0.57 + 0.42)

4.6. Summary

In this chapter, we solve the multimodal timetable information problem with

walking transfer. In addition to the line route information of a transit system, our

problem takes timetable and walking transfer into consideration. In order to in-

corporate timetable information and walking transfer, a new network, multimodal

timetable-based network, is constructed through algorithm CMTBN. After con-

structing the multimodal timetable-based network, we then apply algorithm EAM

with implementations of topological ordering algorithm and Dijkstra�s algorithm.

For each problem set, the number of arcs of its timetable-based network is much

greater with walking transfer as a transportation means.

By conducting computational experiments on datasets from Taipei transit net-

work, the results have shown reasonable e¢ ciency on PC. Our computational

experiments also support the theoretical projection that topological ordering al-

gorithm should perform better than Dijkstra�s algorithm. Furthermore, we pro-

pose two speed-up techniques to improve computational e¢ ciency. The results of

applying our �rst proposed speed-up technique, SPD, show a 53% running time

improvement. and the results of applying speed-up technique using BFS, SPB,

show a 55% running time improvement. Although the computational results indi-

cate that SPB has a better e¢ ciency than SPD, the improvement attributes the

nature of Taipei transit system. Whether SPB has better computational e¢ ciency

54

than SPD or not requires further validation. Compared with basic timetable in-

formation problem, it takes more time to solve multimodal timetable information

problem with walking transfer. However, the actual performance of mobile device

remains unknown.

CHAPTER 5

METHODOLOGIES ON FARE INFORMATION

PROBLEMS

The nature of fare is very di¤erent from travel time, especially when its struc-

ture is non-linear. In order to �nd the cheapest route in a transit network, we

need to construct a modi�ed transit network with fare information embedded be-

fore applying shortest path algorithms. In order to simplify the problem, we need

to make some assumptions:

Assumption 5.1: In the transit network, the length (cost) between any two

nodes is known and �xed.

Assumption 5.2: The length (cost) is exclusively de�ned as the travel fare

in appropriate monetary units.

Since walking is a costless transportation option, a trip planning system would

generate itineraries composed of all walking with respect to lowest travel fare if

walking is a transportation alternative. Therefore, we make a further assumption

to avoid this scenario:

Assumption 5.3: Walking is restricted to traversals between origin and

transit stations and those between transit stations and destination with-

out exceeding a certain range limitation. Traversing by foot is not a

transportation means between transit stations in �nding an optimal trip

itinerary with lowest travel fare.

55

56

Table 5.1. Nomenclature for fare information problem

A set of arcs in transit network G
E set of arcs in fare-based network ~G
ED set of non-stop arcs in fare-based network ~G
EX set of route-transfer arcs in fare-based network ~G
G transit network; G = (N;A)
~G fare-based network; ~G = (V;E)
K the number of line routes in G
N set of nodes in transit network G
V set of jN j groups of nodes in fare-based network ~G
Vi a node group composed by a set of copies of node i, i 2 N
Vl a node group composed by a set of copies of node l, l 2 N
Vn a node group composed by a set of copies of node n, n 2 N
cij the travel cost between node i and node j, i; j 2 N and i 6= j
i a node in transit network G; i 2 N
j a node in transit network G; j 2 N
k the index of line route in transit network G
n number of nodes
vd origin node in transit network, vd = (d; r��;m��) 2 Vd
vo destination node in transit network, vo = (o; r�;m�) 2 Vo
wd pseudo destination constructed in algorithm LTF
wo pseudo origin constructed in algorithm LTF
� the origin of a non-stop arc in fare-based network ~G
�̂ the origin of a route-transfer arc in fare-based network ~G
� the destination of a non-stop arc in fare-based network ~G
�̂ the destination of a route-transfer arc in fare-based network ~G

5.1. Spatial Data and Fare Data

Let digraph G = (N;A) represent the transit network where N denotes the

set of nodes and A denotes the set of arcs. A node in N represents some physical

location where a transit vehicle can stop to pick up passengers, such as a bus stop,

port, or train station. Each node in N belongs to at least one line route. A line

route is a set of nodes which transfer is not required to travel between them.

A directed arc (i; j) 2 A represents a direct connection from node i to node j

in a line route. Suppose that there are K line routes. Each transit line route k for

k = 1; :::; K can be presented as an individual layer through HDP (see Figure 5.1,

a transit network with MRT and Bus Route can be decomposed into two layers).

57

Figure 5.1. A hierarchical representation of a multimodal transit network

Take the multimodal transit network in Figure 5.2 for example, there are 6

physical locations and 2 transit line routes in di¤erent transit modes. The de-

composed network is shown in Figure 5.1. For MRT (denoted as line route 1),

it is composed by in-route arcs, AMRT = f(i; j) j i; j = 1; 2; 3; 4; 5 and i 6= jg,

which make it a complete graph. For Bus Route (denoted as line route 2), it is

composed by in-route arcs, ABUS = f(i; j) j i; j = 6; 7; 8 and i 6= jg, which make it

a complete graph. These topological connection relations can be stored as spatial

data. In comparison with a timetable-based network, we note that parallel arcs

basically do not exist in each individual layer of a fare-based network. Since each

transit route resides in its own layer, it is unlikely to have more than one route

between two stops in each individual layer.

To calculate the cheapest path, one further requires the fare information

referred as the fare data. The fare data consists of information concerning nodes,

routes, and fare between nodes. Table 5.2 lists the fare data for the transit network

58

Figure 5.2. A multimodal transit network

Table 5.2. Fare data

Route No. Route Segment Fare Route No. Route Segment Fare
Route 1 : Node 1 ! Node 2 : c12 Route 1 : Node 2 ! Node 1 : c21
Route 1 : Node 1 ! Node 3 : c13 Route 1 : Node 2 ! Node 3 : c22
Route 1 : Node 1 ! Node 4 : c14 Route 1 : Node 2 ! Node 4 : c24
Route 1 : Node 1 ! Node 5 : c15 Route 1 : Node 2 ! Node 5 : c25

Route No. Route Segment Fare Route No. Route Segment Fare
Route 1 : Node 3 ! Node 1 : c31 Route 1 : Node 4 ! Node 1 : c41
Route 1 : Node 3 ! Node 2 : c32 Route 1 : Node 4 ! Node 2 : c42
Route 1 : Node 3 ! Node 4 : c34 Route 1 : Node 4 ! Node 3 : c43
Route 1 : Node 3 ! Node 5 : c35 Route 1 : Node 4 ! Node 5 : c45

Route No. Route Segment Fare Route No. Route Segment Fare
Route 1 : Node 5 ! Node 1 : c51 Route 2 : Node 6 ! Node 7 : c67
Route 1 : Node 5 ! Node 2 : c52 Route 2 : Node 6 ! Node 8 : c68
Route 1 : Node 5 ! Node 3 : c53 Route 2 : Node 7 ! Node 6 : c76
Route 1 : Node 5 ! Node 4 : c54 Route 2 : Node 7 ! Node 8 : c78

Route 2 : Node 8 ! Node 6 : c86
Route 2 : Node 8 ! Node 7 : c87

in Figure 5.1. From assumption 2, the travel cost cij between node i and node j,

i; j 2 N and i 6= j, are all known and �xed.

5.2. Construction of a Fare-based Network

To calculate the itinerary with the lowest travel cost in a transit network, one

requires incorporating the fare information into the transit network. To this end,

here we propose a preprocessing algorithm to construct a hierarchical network

called the fare-based network, denoted by ~G = (V;E), where V is a set of jN j

groups of nodes and E = ED [EX consists of the non-stop arcs (ED, arcs that

59

are in the same line route) and route-transfer arcs (EX, arcs that connect di¤erent

line routes).

A node group Vi � V , for each i 2 N is composed by a set of copies of node

i 2 N , where each copy corresponds to the same physical location of node i. For

our convenience, three tuples, denoted by (i; r;m), are used to describe each node

v 2 V in the fare-based transportation network, where i corresponds to a physical

location of node i 2 N , r represents the index of the route that passes i, and m

indicates the transit mode.

For each in-route arc (�; �) 2 ED, � 2 Vl and � 2 Vn where l 6= n. While an

in-route arc is directed from a node to another within a transit route, transfer arc

(�̂; �̂) 2 EX connects two nodes of the same physical location but on di¤erent

transit routes. That is, if �̂ 2 Vl and �̂ 2 Vn, then l = n.

Now we give steps of our preprocessing algorithm CTFBN (Constructing the

Fare-Based Network) as follows:

Step 1: Read the spatial data and fare data.

Step 2: For each node i 2 V , we store each node the de�ned tuples (i; r;m).

Step 3: Construct each in-route arc (�; �) 2 ED.

Step 4: Construct each transfer arc (�̂; �̂) 2 EX:

5.3. Query and Solution Method on Fare-based Networks

In this section, we design an algorithm to solve the lowest fare problem on the

fare-based network, and then demonstrate this procedure with the simple transit

network shown in Figure 5.1. In contrast with timetable-based network, the fare-

based network is not acyclic, thus we will apply variants of Dijkstra�s algorithms

to solve the shortest path problem.

60

5.3.1. Procedures

Depending on the locations of the requested origin o and destination d of the

query, we would like to identify a feasible itinerary of the minimum travel fare

from o to d in ~G. Here we give an algorithm called LTF (stands for Lowest Travel

Fare) with steps as follows:

Step 1: Read the fare-based network ~G, as well as all the related data

structures.

Step 2: Read the indices of the requested origin o and destination d.

Step 3: Construct a pseudo origin wo, a pseudo destination wd, arti�cial

arcs (wo; vo) for each node vo = (o; r�;m�) 2 Vo and arti�cial arcs (vd; wd)

for each node vd = (d; r��;m��) 2 Vd.

Step 4: Remove the arti�cial arcs whose lengths (costs) exceed the user-

speci�ed value.

Step 5: Solve a shortest path from wo to wd in ~G using any shortest path

algorithm.

Step 6: Output the calculated shortest path, which corresponds to the

cheapest itinerary as requested

5.3.2. An Illustrative Example

In order to demonstrate the formulation of our fare-based transportation network,

consider a transit network made up of two transit routes and eight nodes as shown

in Figure 5.1. Table 5.2 gives the fare data of this transit system.

In this example, a transfer can only occur at transit stations with same physical

locations. In other words, transfer can only occur between node 3 and node 7

in this example. Suppose that node 4 and node 6 are within the user-speci�ed

range from origin, and node 2 and node 8 are within the user-speci�ed range from

destination. Our algorithm LTF reads in the fare-based transit network and adds

pseudo nodes and arti�cial arcs to construct a modi�ed fare-based transit network

61

Figure 5.3. A fare-based multimodal transit network

Table 5.3. Node information of illustrative example

N1 (1, 1, 1) N5 (5, 1, 1)
N2 (2, 1, 1) N6 (6, 2, 2)
N3 (3, 1, 1) N7 (7, 2, 2)
N4 (4, 1, 1) N8 (8, 2, 2)

as shown in Figure 5.3, and solve a shortest path from the pseudo origin to the

pseudo destination. In this case, the itinerary with the lowest travel fare will be

starting from node 6, taking the bus route, and arriving at node 8. The total cost

is $3. Table 5.3 demonstrates the information stored in each node. Table 5.4 lists

the fare data for this transit network.

5.4. Computational Experiments

This section summarizes our computational results of fare information problem.

After introducing the implementation settings, datasets from Taipei transit system

62

Table 5.4. Fare data of illustrative example

in-route arcs of MRT
Route No. Route Segment Fare Route No. Route Segment Fare
Route 1 : Node 1 ! Node 2 : 10 Route 1 : Node 3 ! Node 4 : 5
Route 1 : Node 1 ! Node 3 : 5 Route 1 : Node 3 ! Node 5 : 5
Route 1 : Node 1 ! Node 4 : 10 Route 1 : Node 4 ! Node 1 : 10
Route 1 : Node 1 ! Node 5 : 10 Route 1 : Node 4 ! Node 2 : 10
Route 1 : Node 2 ! Node 1 : 10 Route 1 : Node 4 ! Node 3 : 5
Route 1 : Node 2 ! Node 3 : 5 Route 1 : Node 4 ! Node 5 : 10
Route 1 : Node 2 ! Node 4 : 10 Route 1 : Node 5 ! Node 1 : 10
Route 1 : Node 2 ! Node 5 : 10 Route 1 : Node 5 ! Node 2 : 10
Route 1 : Node 3 ! Node 1 : 5 Route 1 : Node 5 ! Node 3 : 5
Route 1 : Node 3 ! Node 2 : 5 Route 1 : Node 5 ! Node 4 : 10

in-route arcs of Bus Route
Route No. Route Segment Fare Route No. Route Segment Fare
Route 2 : Node 6 ! Node 7 : 3 Route 2 : Node 7 ! Node 8 : 3
Route 2 : Node 6 ! Node 8 : 3 Route 2 : Node 8 ! Node 6 : 3
Route 2 : Node 7 ! Node 6 : 3 Route 2 : Node 8 ! Node 7 : 3

transfer arcs from MRT to bus
Route Segment Fare
Node 3 ! Node 7 : 0

transfer arcs from bus to MRT
Route Segment Fare
Node 7 ! Node 3 : 0 :

arti�cial arcs from pseudo origin to nodes
Route Segment Fare Route Segment Fare
o ! Node 4 : 0 o ! Node 6 : 0

arti�cial arcs from nodes to pseudo destination
Route Segment Fare Route Segment Fare
Node 2 ! d : 0 Node 8 ! d : 0

will be used for the implementations. We will conduct our optimization process

with Dijkstra�s algorithm.

5.4.1. Settings and Problem Sets for the Implementation

All of our computational experiments are conducted using Microsoft Visual Studio

2005 on a Acer Aspire machine with an Intel Core 2 Duo processor at 1866 MHz

and 2039 MB RAM running Microsoft Windows XP SP2.

63

We test our implementation on problem sets based on the bus datasets obtained

from China Engineering Consultants Incorporation (CECI) and MRT datasets

obtained from Taipei Rapid Transit Corporation (i.e. Taipei Metro). The bus

datasets consists of bus route information and bus stop locations. The MRT

datasets consists of MRT station location and the travel fare between each MRT

station. Since the bus datasets do not include fare information, we assume that

the travel fare between every bus stop on the same line route is a �xed number;

in our case, for any journey on the same line route, the travel fare is set at $15.

5.4.2. Algorithmic Running Time Comparison

We select 5 problem sets for computational experiments. Problem set P1 consists

of 139 line routes, 3392 transit stations, and 11001 arcs. Problem set P2 consists

of 160 line routes, 3732 transit stations, and 13183 arcs. Problem set P3 consists

of 187 line routes, 4117 transit stations, and 14892 arcs. Problem sets P4 consists

of 202 line routes, 4240 transit stations, and 15854 arcs. Problem set P5, the

complete network of Taipei transit system, consists of 336 line routes, 5451 transit

stations, and 25736 arcs. The number of arcs for the original transit network, the

number of arcs for the fare-based network, and the time to construct the fare-

based network are summarized in Table 5.5. The time to construct the network

increases as the network size increases.

For each problem set, we select 10 groups of OD pairs. In each OD groups,

there are 100 OD pairs with approximately same Euclidean distance. In addition,

we conduct experiment on 5000 OD pairs with origins and destinations randomly

selected. Each OD pair was checked by Depth-First Search (DFS) to assure feasible

solutions before applying topological ordering algorithm. The unit of time for

performance comparison is central processing unit time (CPU time). CPU time

is the amount of time that a computer program consumes in processing central

64

Table 5.5. Time to construct fare-based network

Set Routes Nodes/Arcs (original) Nodes/Arcs (expanded) Time (in CPU time)

P1 139 3392 / 11001 3392 / 472772 14432
P2 160 3732 / 13183 3732 / 603696 19792
P3 187 4117 / 14892 4117 / 659275 20807
P4 202 4240 / 15854 4240 / 695337 21729
P5 336 5451 / 25736 5451 / 1002431 36274

Table 5.6. Average running time on problem set 5 for di¤erent OD group

Problem Set OD Group DIJF
P5 1 7098
P5 2 7306
P5 3 7624
P5 4 7797
P5 5 7977
P5 6 8218
P5 7 8511
P5 8 8619
P5 9 8773
P5 10 9033

time unit in CPU click

processing unit (CPU) instructions. The CPU time is often measured in clock

ticks and is thereby used as a point of comparison for CPU usage of a program.

Dijkstra�s algorithm with binary heap, denoted as DIJF, is implemented for

computational experiments. A binary heap data structure requires O(log n) time

to perform insert, decrease-key and delete-min, and it requires O(1) time for the

other heap operations. Consequently, the binary heap version of Dijkstra�s algo-

rithm runs in O(m log n) time. The results for problem set 5, the complete Taipei

transit system, are summarized in Table 5.6. As for the computational perfor-

mance on 5000 randomly selected OD pairs, the results are presented in Table

5.7. Results for other problem sets are shown in Appendix C. We notice that the

running time increases as the network size increases.

65

Table 5.7. Average running time on �ve problem set for randomly
selected OD group

Problem Set DIJF
P1 4796
P2 5009
P3 5108
P4 5252
P5 7589

time unit in CPU click

5.5. Alternative Fare Models

In section 5.2, we propose a fare-based network to solve all fare problems. In

this general fare-based network, arcs are created so that nodes within a line route

are strongly connected. However, enumerating all possible costs between each

node is not the most e¢ cient technique to �nd cheapest route in Taipei transit

system. For Taipei transit system, we develop an alternative fare model to cope

with two di¤erent situations and thereby reduce the number of arcs and reassign

arc costs to improve computational e¢ ciency.

5.5.1. Fixed Fare Rate and Variable Fare Rate

In Taipei transit system, there are two major categories of fare rates. The �rst

major category is �xed fare rate. Buses in Taipei transit system charge passengers

a �xed fare rate. According to Department of Transportation of Taipei City

Government, the fare for single leg journey is $15 for general public, $12 for

students, $8 for the disabled and children. The second major category is variable

fare rate. MRT in Taipei transit system charges passengers a variable fare rate.

For example, if a MRT passenger decides to travel from Taipei Main Station of

Danshui Line to Taipei City Hall of Nangang Line, it will cost him $20, but if

a MRT passenger decides to travel from Taipei Main Station of Danshui Line to

Qilian of Danshui Line, it will cost him $30.

Therefore, the alternative fare model handles line routes with variable fare

rate and �xed fare rate separately. For variable fare rate, we still use the same

66

Figure 5.4. Network construction for variable fare rate in alternative
fare model

procedures in CTFBN to construct in-route arcs and arti�cial arcs. But there will

be costs assigned on transfer arcs which a traveler leaves a variable-fare-rate line

route for a �xed-fare rate line route. On the other hand, for the transfer arcs where

a traveler leaves a variable-fare-rate line route for another variable-fare-rate line

route, there will be no cost assigned. Figure 5.4 demonstrates this construction

with the assumption that MRT has a variable �xed rate and bus has a �xed fare

rate of $15.

For �xed fare rate, the costs are assigned on arti�cial arcs, and there will be no

cost on in-route arcs. However, if a traveler leaves a �xed-fare-rate line route for

a variable-fare-rate line route, there will be no cost assigned on the transfer arcs.

On the other hand, for transfer arcs where a traveler leave a �xed-fare-rate line

route for another �xed-fare-rate line route, there will be costs assigned on them.

Figure 5.5 demonstrates this construction with the assumption that MRT has a

variable �xed rate and bus has a �xed fare rate of $15.

67

Figure 5.5. Network construction for �xed fare rate in alternative
fare model

Through this approach, in-route arcs connect only adjacent nodes within the

same line route in contrast with forming a complete graph. If a line route has

n nodes, there will be n � 1 arcs in the alternative fare model and there will be
n(n�1)
2

in the general fare model. The number of nodes and the number of transfers

arcs and arti�cial arcs are the same in both general fare model and alternative

fare model. The number of arcs thus reduces signi�cantly. In addition, since

most of the arcs belong to line routes with �xed fare rate such as bus, a great

number of in-route arcs will have zero cost in the alternative fare model. With the

implementation of Dijkstra�s shortest path algorithm, the running time decreases

as the number of zero-cost arcs increases.

5.5.2. Transfer Discount

In Taipei transit system, the �rst bus transfer after a MRT trip within an hour is

free. For example, if you take MRT to travel from Taipei Main Station of Danshui

Line to Taipei City Hall of Nangang Line, and then switch to a bus to travel from

68

Figure 5.6. Modi�cation on arc cost of transfer arc connecting MRT
to bus

Taipei City Hall to National Palace Museum, the bus ride will be free as long as

the line route consists of single leg. In this case, we will change the costs to zero

on arcs connecting a MRT line route to bus line route. Figure 5.6 illustrates this

modi�cation.

Similarly, we can apply this technique to any transfer discount.

5.6. Computational Experiments on Alternative Fare Models

This section summarizes our computational results of fare information problem

using the alternative fare model. After introducing the implementation settings,

datasets from Taipei transit system will be used for the implementations. We will

conduct our optimization process with Dijkstra�s algorithm.

69

5.6.1. Settings and Problem Sets for the Implementation

All of our computational experiments are conducted using Microsoft Visual Studio

2005 on a Acer Aspire machine with an Intel Core 2 Duo processor at 1866 MHz

and 2039 MB RAM running Microsoft Windows XP SP2.

We test our implementation on problem sets based on the bus datasets obtained

from China Engineering Consultants Incorporation (CECI) and MRT datasets

obtained from Taipei Rapid Transit Corporation (i.e. Taipei Metro). The bus

datasets consists of bus route information and bus stop locations. The MRT

datasets consists of MRT station location and the travel fare between each MRT

station. Since the bus datasets do not include fare information, we assume that

the travel fare between every bus stop on the same line route is a �xed number;

in our case, for any journey on the same line route, the travel fare is set at $15.

5.6.2. Algorithmic Running Time Comparison

We select 5 problem sets for computational experiments. Problem set P1 consists

of 139 line routes, 3392 transit stations, and 11001 arcs. Problem set P2 consists

of 160 line routes, 3732 transit stations, and 13183 arcs. Problem set P3 consists

of 187 line routes, 4117 transit stations, and 14892 arcs. Problem sets P4 consists

of 202 line routes, 4240 transit stations, and 15854 arcs. Problem set P5, the

complete network of Taipei transit system, consists of 336 line routes, 5451 transit

stations, and 25736 arcs.

For each problem set, we select 10 groups of OD pairs. In each OD groups,

there are 100 OD pairs with approximately same Euclidean distance. In addition,

we conduct experiment on 5000 OD pairs with origins and destinations randomly

selected. Each OD pair was checked by Depth-First Search (DFS) to assure feasible

solutions before applying topological ordering algorithm. The unit of time for

performance comparison is central processing unit time (CPU time). CPU time

is the amount of time that a computer program consumes in processing central

70

Table 5.8. Average running time using alternative fare model on
problem set 5 for di¤erent OD group

Problem Set OD Group DIAT
P5 1 3069
P5 2 3258
P5 3 3418
P5 4 3503
P5 5 3621
P5 6 3792
P5 7 3886
P5 8 3927
P5 9 4072
P5 10 4163

time unit in CPU click

Table 5.9. Average running time using alternative fare model on �ve
problem set for randomly selected OD group

Problem Set DIAT
P1 2710
P2 2796
P3 2851
P4 2961
P5 3204

time unit in CPU click

processing unit (CPU) instructions. The CPU time is often measured in clock

ticks and is thereby used as a point of comparison for CPU usage of a program.

Dijkstra�s algorithm with binary heap, denoted as DIAT, is implemented for

computational experiments. A binary heap data structure requires O(log n) time

to perform insert, decrease-key and delete-min, and it requires O(1) time for the

other heap operations. Consequently, the binary heap version of Dijkstra�s algo-

rithm runs in O(m log n) time. The results for problem set 5, the complete Taipei

transit system, are summarized in Table 5.8. As for the computational perfor-

mance on 5000 randomly selected OD pairs, the results are presented in Table

5.9. Results for other problem sets are shown in Appendix D. We notice that the

running time reduces signi�cantly in comparison with the general fare model.

71

5.7. Summary

In this chapter, we solve the fare information problem. In addition to the line

route information of a transit system, our problem takes fare information into

consideration. In order to incorporate fare information, a new network, fare-based

network, is constructed through algorithm CTFBN. After constructing the basic

timetable-based network, we then apply algorithm LTF with implementations of

Dijkstra�s shortest path algorithm with binary heap. We also propose an alter-

native fare model to serve Taipei transit system more e¢ ciently. Our alternative

model handles line routes with variable fare rate and �xed fare rate separately, and

thus reduces the number of arcs and reassigns some arcs with zero costs. More-

over, we can implant transfer discounts in the alternative fare model by changing

the arc costs on transfer arcs..

By conducting computational experiments on datasets from Taipei transit net-

work, the results have shown reasonable e¢ ciency on PC. Furthermore, we reduces

the running time by using the alternative fare model. The reduction attributes to

the reduction of arcs and reassignment of arc costs. However, our method may

not be e¢ cient enough to implement on a application server, which is a software

engine that delivers applications to client computers or devices, typically through

the Internet and using the HyperText Transfer Protocol (HTTP), let alone mobile

devices. Application servers are distinguished from web servers by the extensive

use of server-side dynamic content and frequent integration with database engines.

To expand the utilization of our method, we can research into more speed-up tech-

niques in the future.

CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

This chapter concludes the thesis by highlighting our contributions in Section

6.1, and then suggesting some potential directions for future research in compu-

tational e¢ ciency, system building and their related problems in Section 6.2.

6.1. Summary and Contributions

This thesis contains frameworks for generating itinerary for passengers in a

transit network when timetable information or fare information are available. Dur-

ing the past �ve decades, many new methods and applications related to trans-

portation and transit system have been proposed and researched, but few were in

regard to timetable information and fare information.

Assuming that a passenger�s objective is to minimize the total travel time to

the intended destination in a transit system, we consider two situations" basic

timetable information problem, and multimodal timetable information problem

with walking transfer.

In Chapter 3, we discuss the basic timetable information problem. In this

problem, a passenger can only travel from one transit station to another by tran-

sit vehicle. In other words, our proposed solution needs to generate an itinerary

with minimal travel time while walking is not a transportation means. Through

our solution method, we �rst construct a timetable-based network. Since the

timetable-based network is acyclic, we then use a topological-ordering-based algo-

rithm inspired by Ahuja et al. [1] to �nd the shortest path. Although shortest

path problem for transit system has been researched for many years, to the best

of our knowledge, there exists no topological-ordering-based algorithm designed

speci�cally for solving timetable information problems.

72

73

Numerical results are presented to illustrate the e¢ ciency of our proposed

method; the results have shown reasonable e¢ ciency on PC. In addition, by show-

ing the numerical results of classical shortest path algorithm, Dijkstra�s algorithm,

we demonstrate the disparity in e¢ ciency of Dijkstra�s algorithm and topological

ordering algorithm. The computational results match the theoretical prediction

that topological ordering algorithm performs more e¢ ciently than Dijkstra�s al-

gorithm. For application servers or mobile devices, the CPU and memory may be

inferior to those of PC. We thus proposed two speed-up techniques to improve the

e¢ ciency of our method. The computational results of our �rst speed-up tech-

nique, which applied Depth-�rst Search to �nd a feasible solution and set an upper

boundary to the posterior topological ordering algorithm, indicate improvement

of more than 50% on running time in comparison to the plain topological ordering

algorithm.

In Chapter 4, we discuss the multimodal timetable information problem with

walking transfer. In this problem, a passengers is allowed to walk from one transit

station to another. Compared with basic timetable information problem, the

number of arcs greatly increases in this problem. Analogous to basic timetable

information problem, our proposed solution method �rst constructs an acyclic

timetable-based network. Then we apply a topological-ordering-based algorithm

to solve the shortest path problem.

Finally, in Chapter 5 we discuss the fare information problem where a passen-

ger�s objective is to minimize the total travel cost to the intended destination in

a transit system. Since listing walking as a transportation means will result in

all-walking itinerary, we exclude walking from our problem. Through our solution

method, we �rst construct a fare-based network. With no timetable informa-

tion embedding, the fare-based network is not acyclic. Therefore, we implement

Dijkstra�s algorithm with binary heap to solve the shortest path problem. The

numerical results indicate reasonable e¢ ciency on PC. However, we also propose

74

an alternative fare model to further improve the computational e¢ ciency. Our

alternative fare model reduces the number of in-route arcs while the number of

transfer arcs and arti�cial arcs remain the same.

Since travel distance, travel time, and travel cost are some of the most im-

portant concerns for a transit passenger, designing solution methods for timetable

information problem and fare information problem, as we have researched in Chap-

ter 3, 4, and 5, is rather crucial.

6.2. Applications on Di¤erent Platforms

In this section, we summarize the di¤erences between two platforms, computers

and mobile devices. We then indicate how to implement our model to generate

itineraries on di¤erent platforms.

6.2.1. Platforms

On a sparse network, such as the timetable-based network or fare-based network

in the thesis, single-source shortest path algorithm is more suitable than all-pairs

shortest path. Therefore, our research focuses on improving computational e¢ -

ciency of single-source shortest path algorithm. However, di¤erent platforms may

require di¤erent types of shortest path algorithms in correspondence with platform

environments.

A mobile device, also known converged device, handheld device, or simply

handheld, is a pocket-sized computing device, typically having a display screen

with touch input or a miniature keyboard. Smartphones and PDAs are most com-

mon among those who require the assistance and convenience of a conventional

computer in environments where carrying one would not be practical. Although

most smartphones and PDAs have both color screens, audio capabilities, and in-

ternet connection, most of them are equipped with CPU and memory inferior

to computers. Many smartphones and PDAs run using a variation of the ARM

75

architecture. The ARM architecture is a 32-bit RISC (Reduced instruction set

computer) microprocessors that are also widely used in mobile devices and em-

bedded systems. For example, one of the most advanced smartphones, iPhone by

Apple Inc., runs a 667MHz ARM1176JZF-based CPU made by Samsung, which

is a SIMD (Single instruction, multiple data), high perf integer CPU with 8-stage

pipeline, 675 Dhryston, and 2.1 MIPS (Million instructions per second). The CPU

for iPhone clocks much slower than the CPU for PC, such as a typical Intel Core

2 Duo Processor E8500 which clocks at 3.16 GHz. With slower CPU, smaller

memory space, and limited battery life, a mobile device thus focuses on compu-

tational e¢ ciency so that each operation will not consume too much energy. In

other words, we can consume less energy by �nishing the operation quicker.

On the other hand, a personal computer (PC) may be a desktop computer, a

laptop computer, or a tablet computer. The most common operation systems are

Microsoft Windows, Mac OS, and Linux, while the most common microprocessors

are the x86 and PowerPC CPUs. The distinguishing characteristics of PC are

that the computer is primarily used, interactively, by one person at a time. This

is contrast to the batch-processing or time-sharing servers which allow the systems

to be used by many people, usually at the same time.

In information technology, a server is a device that performs for connected

clients as part of the client-server architecture. Server computers are devices

designed to run server application that accepts connections in order to service re-

quests by sending back responses, often for extended periods of time with minimal

human direction and maintenance. Under light loading, every server application

can run concurrently on a single server computer and under heavy loading, multi-

ple server computers may be required for each application. Although servers can

be built from commodity computer components, dedicated, high-load, mission-

critical servers use specialized hardware that is optimized for the needs of servers.

CPU speeds are far less critical for many servers than they are for many PCs.

76

Not only are typical server tasks likely to be delayed more by Input/Output (I/O)

requests than processor requirements, but also the lack of any graphical user in-

terface (GUI) in many servers frees up great amount of processing power for other

tasks, making the overall processor power requirement lower. The lack of GUI in a

server makes it unnecessary to install expensive video adapters. Similarly, elabo-

rate audio interfaces, joystick connections, USB (universal serial bus) peripherals,

and the like are usually unnecessary. Typical servers include heavy-duty network

connections in order to allow them to handle the large amounts of tra¢ c that they

typically receive and generate as they receive and reply to client requests. In brief,

the key characteristic of servers is to handle I/O requests as soon as possible.

6.2.2. Shortest Path Algorithms

On a mobile device, the memory space is limited. Therefore, it is not practical to

use an all-pairs shortest path algorithm to obtain every possible result and store

them in the database so that the software application can simply display a stored

result upon user query. With searching for shortest path upon every user query

as the only option, improving computational e¢ ciency to conserve battery life

with limited memory space is the key factor. We thus propose several speed-up

techniques to reduce application running time. However, instead of single-source

shortest path algorithm, denoted as SSSPA, we can apply all-pairs shortest path

algorithm, denoted as APSPA, on a di¤erent platform, such as computers.

Computers usually have larger disk space for data storage, and thus we can

use an all-pairs shortest path algorithm to �nd all results and store them into

database if the network has moderate size, such as Taiwan railway network. The

application will seize results from database when a user request an itinerary. Under

this architecture, the application does not need to compute shortest paths upon

query, and thus the running time for each query is a constant time O(1) while

the running time for each query is O(ET), where ~GT = (VT ; ET) represents an

77

Table 6.1. Comparison between single-source shortest path and all-
pairs shortest path algorithms for timetable problems

SSSPA APSPA
Storage space O(V T+ET) O(FV 2T)

Preprocessing time 0 O(FV TET)
Query time O(ET) O(1)

Table 6.2. Comparison between single-source shortest path and all-
pairs shortest path algorithms for fare problem

SSSPA APSPA
Storage space O(V F+EF) O(V 2F)

Preprocessing time 0 O(V F (EF+V F log VF))
Query time O(EF+V F log VF) O(1)

acyclic timetable-based network, by using the topological ordering algorithm for

timetable information problems. However, the preprocessing time for SSSPA and

APSPA are di¤erent.

We can solve an all-pairs shortest-paths problem by running a single-source

shortest-path algorithm VT times, once for each vertex as the source. If all edge

weights are nonnegative, we can use a single-origin-all-destinations algorithm sepa-

rately for each origin. For all-pairs problem, topological ordering algorithm yields

a running time of O(VTET). In addition, we have to take departure time into

consideration for timetable information problem. Since the passenger departure

time is unknown, we need to enumerate itineraries for all possible departure time.

Let F be the collection of time when a transit vehicle leaves a transit station,

and thus the total preprocessing time to solve the all-pairs shortest path prob-

lem for timetable information problems is O(FVTET) while SSSPA requires no

preprocessing time.

The storage space for data is O(VT + ET) for SSSPA since we only need to

store the node and arc information of the timetable-based network. On the other

hand, the space required to store all possible itineraries is O(FV 2T) because there

are V 2T OD pairs for each possible departure time. The comparison is concluded

in Table 6.1.

78

As for fare information problem, timetable information has been excluded.

Therefore, the preprocessing time for fare information problem by using APSPA

is O(VF (EF +VF log VF)) , where ~GF = (VF ; EF) represents a fare-based network,

while SSSPA requires no preprocessing time. The running time for each query

for fare information problem remains a constant time O(1) by using APSPA and

O(EF + VF log VF) by using a Fibonacci heap implementation of Dijkstra�s algo-

rithm since the topological ordering algorithm is not applicable to fare information

problem. The space required to store all possible itineraries by using APSPA is

O(V 2F) while using SSSPA only takes O(VF + EF). The comparison is concluded

in Table 6.2.

6.3. Future Research

In this section, we propose some interesting directions for future research.

6.3.1. Multiobjective Shortest Path Problem

Due to the multiobjective nature of many optimization problems, mainly in the

area of transportation problem, in recent years there has been an increase in

research on multiobjective shortest path problem, with goals of relevant interest,

like the minimization of cost, time, unreliability, etc. When a budget of various

resources is given, some objectives related to the corresponding resources can be

treated as constraints for the problem.

It is usually assumed that in multiobjective analysis, the objectives are in con-

�ict; therefore, in general, there is no single optimal solution, but rather a set

of nondominated or noninferior solutions, denoted Pareto optimal solutions, from

which the decision maker must select the most preferred one, or the best compro-

mise solution. There are several approaches used for exploring the Pareto optimal

solution set. More speci�cally, we can distinguish the following three categories:

79

generating methods, methods based on utility functions, and interactive meth-

ods. In these methods, the multiobjective shortest path problem becomes a single

objective shortest path problem.

Although the multiobjective shortest path problem �ts the reality that a pas-

senger may be concerned for both travel time and travel cost, it is di¢ cult to,

taking methods based on utility functions for example, assign the coe¢ cients for

utility functions individually. Nevertheless, displaying an itinerary ful�lling mul-

tiple objectives may be useful in the real world.

6.3.2. Dynamic Information

Automatic vehicle location (AVL) systems based on global positioning systems

(GPS) have been widely adopted by many transit systems to monitor the move-

ments of transit vehicles on a real-time basis. In our research, we assume that

transit vehicles travel in the absence of congestion. As a result, when predicting

bus arrival times at subsequent bus stops, the delay incurred at one stop will be

carried forward in the downstream direction. In reality, skilled bus operators

sometimes adjust their speeds in order to keep their buses on schedule. Therefore,

prediction accuracy incorporating real-time information for an itinerary planning

system is an issue that should be considered in the context of speci�c requirements

from the perspectives of system users and system suppliers.

It would be useful to provide a passenger with an itinerary using both static

information and dynamic information. Static information refers to bus schedule

information, historical information of tra¢ c conditions, etc. Dynamic informa-

tion includes real-time bus location data, delay at bus stops, weather condition,

current tra¢ c condition, etc. However, the amount of information could be too

enormous for a mobile device or an application server to process. In reality, it is

unrealistic to carry a laptop equipped with Internet access all the time; therefore,

80

the computational e¢ ciency needs further improvement to incorporate dynamic

information on a mobile device.

6.3.3. Geographic Information System

One of the recent development in GIS technology is to deliver GIS data and

analysis functions on the Web through the Internet. Internet GIS, an emerging

technology to serve GIS data and GIS functionality on the Web, is designed to

integrate the Web and GIS in order to manipulate, visualize, and analyze GIS

data on the Web. A transit information system could be composed of the Web

browser, Web server, and one or more application servers. The Web browser is

a user interface to collect user input. The Web server serves as a middleware

to handle user�s request and transfer the request to an application server. The

application server is used to process user requests. The application server could be

composed of three di¤erent components, a map server, a network analysis server,

and a database server. The map server is designed for map rendering and spatial

analysis; the network analysis server is used to provide network analysis functions,

such as shortest path algorithms; and the database server is used to handle data

management via DBMSs.

AWeb-based transit information system could integrate Internet GIS into it so

that the user interface is map-based. The user can thus interact with the transit

network and street maps, conducting query, search, and map rendering. The

interactive map-based user interface also allows the system to incorporate other

information, such as shops, theaters, parks, and other local attractions. This

is very important for visitors who may want to explore these sites around their

destinations. However, building a transit information system is beyond the scope

of this thesis, and can be exploited as a future research.

References

[1] Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network �ows: theory,
algorithms and applications. Englewood Cli¤s, NJ: Prentice Hall.

[2] Ahuja, R. K., Mehlhorn, K., Orlin, J. B., & Tarjan, R. E. (1990). Faster
algorithms for the shortest path problem. Journal of the ACM, 37 (2), 213-
223.

[3] Cathey, F. W., & Dailey, D. J. (2003). A prescription for transit ar-
rival/departure prediction using automatic vehicle location data. Transporta-
tion Research Part C, 11 (3-4), 241-264.

[4] Caul�eld, B., & O�Mahony, M. (2007). An examination of the public transport
information requirements of users. IEEE Transactions on Intelligent Trans-
portation Systems, 8 (1), 21-30.

[5] Cheng, S.-T., Liu, J.-P., Kao, J.-L., & Chen, C.-M. (2002). A new framework
for mobile web services. Paper presented at the Applications and the Internet
(SAINT) Workshops, Nara City, Japan.

[6] Cherkassky, B. V., Goldberg, A. V., & Radzik, T. (1996). Shortest paths
algorithms: theory and experimental evaluation.Mathematical Programming,
73 (2), 129-174.

[7] Chriqui, C. (1975). Common bus lines. Transportation Science, 9 (2), 115-121.

[8] Corman, T. H., Leiserson, C. E., & Riverst, R. L. (1990). Introduction to
algorithms. Cambridge, MA: MIT Press.

[9] Dial, R. B. (1969). Algorithm 360: shortest-path forest with topological or-
dering. Communications of the ACM, 12 (11), 632-633.

[10] Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.
Numerische Mathematik, 1 (1), 269-271.

[11] Fredman, M. L., & Tarjan, R. E. (1987). Fibonacci heaps and their uses
in improved network optimization algorithms. Journal of the ACM, 34 (3),
596-615.

[12] Friedrich, M., Hofsaess, I., & Wekeck, S. (2001). Timetable-based transit
assignment using brand and bound techniques. Journal of the Transportation
Research Board: Transportation Research Records, 1752, 100-107.

81

82

[13] Gentile, G., Nguyen, S., & Pallottino, S. (2005). Route choice on transit
networks with online information at stops. Transportation Science, 39 (3),
289-297.

[14] Goldberg, A. V., & Radzik, T. (1993). A heuristic improvement of the
Bellman-Ford algorithm. Applied Mathematical Letters, 6 (3), 3-6.

[15] Granat, J., & Guerriero, F. (2003). The interactive analysis of the multicrite-
ria shortest path problem by the reference point method. European Journal
of Operational Research, 151 (1), 103-118.

[16] Hall, R. W. (1996). Route choice and advanced traveler information systems
on a capacitated and dynamic network. Transportation Research Part C, 4 (5),
289-306.

[17] Hickman, M. (2002). Robust passenger itinerary planning using transit AVL
data. Paper presented at the IEEE 5th International Conference on Intelligent
Transportation Systems, Singapore.

[18] Horn, M. E. T. (2004). Procedures for planning multi-leg journeys with �xed-
route and demand-responsive passenger transport services. Transportation
Research Part C, 12 (3-4), 33-55.

[19] Huang, R., & Peng, Z.-R. (2002). Schedule-based path-�nding algorithms for
transit trip-planning systems. Journal of the Transportation Research Board:
Transportation Research Records, 1783, 142-148.

[20] Institute of Transportation. (2001). Conditions of Transportation and Com-
munications in Taiwan Area. Taipei, Taiwan: Institute of Transportation,
Ministry of Transportation and Communications.

[21] Koncz, N., Greenfeld, J., & Mouskos, K. (1996). A strategy for solving static
multiple-optimal-path transit network problems. Journal of Transportation
Engineering, 122 (3), 218-225.

[22] Koncz, N., & Greenfeld, O. (1995). The development of a GIS-based transit
advanced traveler information system. Paper presented at the Annual Con-
ference of the Urban and Regional Information Systems Association, Wash-
ington, D.C.

[23] Lam, W. H. K., Cheung, C. Y., & Poon, Y. F. (1999). A study of passenger
discomfort measures at Hong Kong mass transit railway system. Journal of
Advanced Transportation, 33 (3), 389-399.

[24] Le Clercq, F. (1972). A public transport assignment method. Tra¢ c Engi-
neering and Control, 14 (2), 91-96.

[25] Levinson, D. (2003). The value of advanced traveler information systems for
route choice. Transportation Research Part C, 11 (1), 75-87.

83

[26] Lo, H. K., Yip, C. W., & Wan, K. H. (2003). Modeling transfer and non-
linear fare structure in multi-modal network. Transportation Research Part
B, 37 (2), 149-170.

[27] Lo, H. K., Yip, C.-W., & Wan, Q. K. (2004). Modeling competitive multi-
modal transit services: a nested logit approach. Transportation Research Part
C, 12 (3-4), 251-272.

[28] Lozano, A., & Storchi, G. (2002). Shortest viable hyperpath in multimodal
networks. Transportation Research Part B, 36 (10), 853-874.

[29] McCormack, J. E., & Roberts, S. A. (1996). Exploiting object oriented meth-
ods for multi-modal trip planning systems. Information and Software Tech-
nology, 38 (6), 409-417.

[30] Mirchandani, P. B., & Wiecek, M. M. (1993). Routing with nonlinear mul-
tiattribute cost functions. Applied Mathematics and Computation, 54 (2-3),
215-239.

[31] Modesti, P., & Sciomachen, A. (1998). A utility measure for �nding multiob-
jective shortest paths in urban multimodal transportation networks. European
Journal of Operational Research, 111 (3), 495-508.

[32] Mouskos, K. C., & Greenfeld, J. (1999). A GIS-based multimodal advanced
traveler information system. Computer-Aided Civil and Infrastructure Engi-
neering, 14 (4), 267-279.

[33] Muller-Hannemann, M., Schulz, F., Wagner, D., & Zaroliagis, C. (2007).
Timetable information: models and algorithms. In Algorithmic Methods for
Railway Optimization. Berlin, Germany: Springer.

[34] Nachtigal, K. (1995). Time depending shortest-path problems with applica-
tions to railway networks. European Journal of Operational Research, 83 (1),
154-166.

[35] Nes, R. V., & Bovy, P. (2004). Multimodal traveling and its impact on urban
transit network design. Journal of Advanced Transportation, 38 (3), 225-241.

[36] Nguyen, S., & Pallottino, S. (1989). Hyperpaths and shortest hyperpaths. Pa-
per presented at the Lectures given at the third session of the Centro Inter-
nazionale Matematico Estivo (C.I.M.E.) on Combinatorial optimization.

[37] Orda, A., & Rom, R. (1990). Shortest-path and minimum-delay algorithms
in networks with time-dependent edge-length. Journal of the ACM, 37 (3),
607-625.

[38] Peng, Z.-R., & Huang, R. (2000). Design and development of interactive trip
planning for web-based transit information systems. Transportation Research
Part C, 8 (1-6), 409-425.

84

[39] Peng, Z.-R., Kim, E., & Weng, Y. (2006). Performance enhancement for
online transit trip planning systems: a dynamic reduction of transit networks.
Paper presented at the Annual Meeting of Transportation Research Board.

[40] Rehrl, K., Bruntsch, S., & Mentz, H.-J. (2007). Assisting multimodal travel-
ers: design and prototypical implementation of a personal travel companion.
IEEE Transactions on Intelligent Transportation Systems, 8 (1), 31-42.

[41] Schulz, F., Wagner, D., & Weihe, K. (2000). Dijkstra�s algorithm on-line: an
empirical case study from public railroad transport. Journal of Experimental
Algorithmics, 5, Article 12.

[42] F. Schulz, D. Wagner, and C. Zaroliagis. (2002) Using multi-level graphs for
timetable information in railway systems. Paper presented at the 4th Work-
shop on Algorithm Engineering and Experiments.

[43] Sen, S., Pillai, R., Joshi, S., & Rathi, A. K. (2001). A mean-variance model
for route guidance in advanced traveler information systems. Transportation
Science, 35 (1), 37-49.

[44] Spiess, H., & Florian, M. (1989). Optimal strategies: a new assignment model
for transit networks. Transportation Research Part B, 23 (2), 83-102.

[45] Taniguchi, E., & Shimamoto, H. (2004). Intelligent transportation system
based dynamic vehicle routing and scheduling with variable travel times.
Transportation Research Part C, 12 (3-4), 235-250.

[46] Tong, C. O., & Richardson, A. J. (1984). A computer model for �nding
the time-dependent minimum path in a transit system with �xed schedules.
Journal of Advanced Transportation, 18 (2), 145-161.

[47] Tong, C. O., & Wong, S. C. (1999). A stochastic transit assignment model
using a dynamic schedule-based network. Transportation Research Part B,
33 (2), 107-121.

[48] Vuchic, V. (1981). Urban Public Transportation Systems and Technology. En-
glewood Cli¤s, NJ: Prentice-Hall.

[49] Wang, I.-L. (2003). Shortest paths and multicommodity network �ows. Dis-
sertation Abstracts International, 64 (03), 1472B. (AAT 3085008)

[50] Wang, I.-L., Johnson, E. L., & Sokol, J. S. (2005). A multiple pairs shortest
path algorithm. Transportation Science, 39 (4), 465-476.

[51] Wong, K. I., Wong, S. C., Tong, C. O., Lam, W. H. K., Lo, H. K., Yang,
H., et al. (2005). Estimation of origin-destination matrices for a multimodal
public transit network. Journal of Advanced Transportation, 39 (2), 139-168.

[52] Wu, C. H., Su, D. C., Chang, J., Wei, C. C., Lin, K. J., & Ho, J. M. (2003).
The design and implementation of intelligent transportation web services. Pa-
per presented at the IEEE Conference on Electronic Commerce, Newport
Beach, CA.

85

[53] Wu, Q., & Hartley, J. (2004). Accommodating user preferences in the opti-
mization of public transport travel. International Journal of Simulation, 5 (4),
12-25.

[54] Yang, H., & Huang, H.-J. (2004). Modeling user adoption of advanced traveler
information systems: a control theoretic approach for optimal endogenous
growth. Transportation Research Part C, 12 (3-4), 193-207.

[55] Yin, Y., Lam, W. H. K., & Miller, M. A. (2004). A simulation-based reliabil-
ity assessment approach for congested transit network. Journal of Advanced
Transportation, 38 (1), 27 - 44.

[56] Zhan, F. B., & Noon, C. E. (1998). Shortest path algorithms: an evaluation
using real road networks. Transportation Science, 32 (1), 65-73.

APPENDIX A

COMPUTATIONAL EXPERIMENTS ON BASIC

TIMETABLE INFORMATION PROBLEMS

This appendix lists computation results of di¤erent shortest path algorithms,

DIJ, TO, and SPT, on datasets derived from Taipei transit system and the im-

provement of e¢ ciency by using our proposed speed-up technique.

Table A.1. Relative performance on problem set 1

OD Group DIJ TO SPD (=DFS+TOAD) �TD SPB (=BFS+TOAB) �TB
1 3895 2144 1032 (=591+441) 54.1% 1031 (=594+437) 51.9%
2 4039 2270 1082 (=615+466) 54.0% 1086 (=623+463) 52.1%
3 4096 2320 1109 (=632+477) 54.1% 1106 (=640+466) 52.3%
4 4250 2457 1175 (=669+506) 54.1% 1155 (=670+485) 53.0%
5 4351 2550 1216 (=694+522) 54.2% 1181 (=700+481) 53.7%
6 4419 2632 1246 (=705+539) 54.2% 1211 (=719+493) 54.0%
7 4378 2609 1237 (=705+532) 54.3% 1214 (=714+500) 53.4%
8 4586 2822 1335 (=757+578) 54.3% 1305 (=779+526) 53.7%
9 4645 2878 1363 (=774+589) 54.3% 1362 (=779+583) 52.6%
10 4811 3041 1435 (=814+621) 54.3% 1419 (=824+595) 53.3%

time unit in CPU click �TD = (TO � SPD)/TO � 100% �TB = (TO � SPB)/TO � 100%

Table A.2. Relative performance on problem set 2

OD Group DIJ TO SPD (=DFS+TOAD) �TD SPB (=BFS+TOAB) �TB
1 4096 2296 1078 (=605+471) 53.1% 1047 (=609+438) 54.4%
2 4220 2413 1151 (=655+496) 52.3% 1127 (=662+465) 53.3%
3 4208 2423 1153 (=653+498) 52.5% 1141 (=671+470) 52.9%
4 4301 2516 1188 (=672+515) 52.8% 1201 (=690+511) 52.3%
5 4675 2896 1373 (=783+589) 52.6% 1375 (=786+589) 52.5%
6 4827 3024 1418 (=799+617) 53.2% 1372 (=805+567) 54.6%
7 4925 3109 1455 (=821+632) 53.3% 1414 (=830+584) 54.5%
8 5161 3368 1583 (=894+687) 53.0% 1572 (=913+659) 53.3%
9 5226 3456 1623 (=918+703) 53.1% 1632 (=939+693) 52.8%
10 5286 3461 1622 (=920+702) 53.1% 1595 (=922+673) 53.9%

time unit in CPU click �TD = (TO � SPD)/TO � 100% �TB = (TO � SPB)/TO � 100%

86

87

Table A.3. Relative performance on problem set 3

OD Group DIJ TO SPD (=DFS+TOAD) �TD SPB (=BFS+TOAB) �TB
1 4075 2281 1088 (=620+468) 52.3% 1073 (=635+438) 52.9%
2 4246 2437 1162 (=663+499) 52.3% 1152 (=663+489) 52.7%
3 4456 2672 1259 (=714+545) 52.9% 1249 (=719+530) 53.2%
4 4646 2863 1364 (=778+586) 52.4% 1362 (=797+565) 52.4%
5 4804 3009 1410 (=796+614) 53.1% 1399 (=805+594) 53.5%
6 4883 3095 1459 (=827+632) 52.9% 1443 (=829+614) 53.4%
7 5057 3232 1507 (=846+661) 53.4% 1526 (=866+659) 52.8%
8 5275 3457 1617 (=914+703) 53.2% 1631 (=936+695) 52.8%
9 5340 3543 1660 (=936+724) 53.1% 1663 (=962+701) 53.1%
10 5910 4131 1934 (=1096+838) 53.2% 1914 (=1121+793) 53.7%

time unit in CPU click �TD = (TO � SPD)/TO � 100% �TB = (TO � SPB)/TO � 100%

Table A.4. Relative performance on problem set 4

OD Group DIJ TO SPD (=DFS+TOAD) �TD SPB (=BFS+TOAB) �TB
1 4199 2386 1152 (=661+491) 51.9% 1112 (=663+449) 53.4%
2 4329 2532 1221 (=699+522) 51.8% 1209 (=712+497) 52.3%
3 4498 2700 1273 (=721+552) 52.9% 1253 (=729+524) 53.6%
4 4750 2900 1396 (=794+602) 51.9% 1369 (=801+568) 52.8%
5 4756 2957 1385 (=781+604) 53.2% 1347 (=793+554) 54.5%
6 4944 3129 1485 (=844+641) 52.5% 1449 (=862+587) 53.7%
7 5358 3549 1656 (=932+724) 53.3% 1606 (=943+663) 54.8%
8 5144 3360 1566 (=879+687) 53.4% 1529 (=884+645) 54.5%
9 5667 3857 1796 (=1014+782) 53.4% 1765 (=1040+725) 54.2%
10 5846 4037 1874 (=1055+819) 53.6% 1855 (=1078+777) 54.0%

time unit in CPU click �TD = (TO � SPD)/TO � 100% �TB = (TO � SPB)/TO � 100%

APPENDIX B

COMPUTATIONAL EXPERIMENTS ON

MULTIMODAL TIMETABLE INFORMATION

PROBLEMS WITH WALKING TRANSFER

Table B.1. Relative performance on problem set 1

OD Group DIJ TO SPD (=DFS+TOAD) �TD SPB (=BFS+TOAB) �TB
1 9478 6372 2923 (=1637+1286) 54.1% 2858 (=1665+1193) 55.1%
2 9777 6675 3070 (=1722+1348) 54.0% 3069 (=1731+1338) 54.0%
3 10050 6948 3789 (=1785+1404) 54.1% 3148 (=1827+1321) 54.7%
4 10363 7253 3326 (=1864+1463) 54.1% 3236 (=1890+1346) 55.4%
5 10655 7553 3461 (=1937+1524) 54.2% 3411 (=1963+1448) 54.8%
6 10919 7817 3583 (=2006+1576) 54.2% 3515 (=2044+1471) 55.0%
7 11295 8191 3747 (=2097+1650) 54.3% 3749 (=2102+1647) 54.2%
8 11543 8442 3856 (=2155+1701) 54.3% 3851 (=2201+1650) 54.4%
9 11862 8762 4004 (=2240+1765) 54.3% 3889 (=2268+1621) 55.6%
10 12245 9152 4181 (=2337+1843) 54.3% 4114 (=2375+1739) 55.0%

time unit in CPU click �TD = (TO � SPD)/TO � 100% �TB = (TO � SPB)/TO � 100%

Table B.2. Relative performance on problem set 2

OD Group DIJ TO SPD (=DFS+TOAD) �TD SPB (=BFS+TOAB) �TB
1 9533 6425 2957 (=1661+1296) 54.2% 2864 (=1661+1203) 55.4%
2 9847 6751 3103 (=1741+1362) 54.1% 3053 (=1780+1273) 54.8%
3 10157 7063 3241 (=1816+1425) 54.2% 3223 (=1823+1400) 54.4%
4 10425 7327 3362 (=1883+1478) 54.2% 3360 (=1905+1455) 54.1%
5 10708 7615 3489 (=1951+1538) 54.2% 3449 (=1961+1488) 54.7%
6 11031 7933 3628 (=2029+1599) 54.3% 3587 (=2038+1549) 54.8%
7 11363 8258 3780 (=2117+1663) 54.3% 3735 (=2133+1602) 54.8%
8 11586 8485 3882 (=2173+1710) 54.4% 3924 (=2227+1697) 53.8%
9 11960 8862 4052 (=2267+1785) 54.3% 3950 (=2300+1650) 55.4%
10 12188 9079 4151 (=2323+1828) 54.4% 4030 (=2347+1683) 55.6%

time unit in CPU click �TD = (TO � SPD)/TO � 100% �TB = (TO � SPB)/TO � 100%

88

89

Table B.3. Relative performance on problem set 3

OD Group DIJ TO SPD (=DFS+TOAD) �TD SPB (=BFS+TOAB) �TB
1 9666 6558 3014 (=1690+1324) 54.0% 2955 (=1718+1237) 54.9%
2 9914 6808 3126 (=1754+1372) 54.1% 3100 (=1795+1305) 54.5%
3 10257 7148 3275 (=1833+1442) 54.2% 3204 (=1881+1323) 55.2%
4 10523 7427 3402 (=1904+1498) 54.2% 3366 (=1955+1411) 54.7%
5 10959 7849 3595 (=2013+1583) 54.2% 3566 (=2019+1547) 54.6%
6 11152 8046 3684 (=2062+1622) 54.2% 3665 (=2104+1561) 54.4%
7 11498 8397 3836 (=2144+1691) 54.3% 3856 (=2208+1648) 54.1%
8 11661 8559 3919 (=2195+1724) 54.2% 3890 (=2214+1676) 54.5%
9 11870 8774 4002 (=2241+1767) 54.3% 3909 (=2245+1664) 55.4%
10 12339 9244 4221 (=2360+1861) 54.3% 4154 (=2380+1774) 55.1%

time unit in CPU click �TD = (TO � SPD)/TO � 100% �TB = (TO � SPB)/TO � 100%

Table B.4. Relative performance on problem set 4

OD Group DIJ TO SPD (=DFS+TOAD) �TD SPB (=BFS+TOAB) �TB
1 9864 6753 3099 (=1736+1363) 54.1% 3131 (=1770+1361) 53.6%
2 10183 7082 3251 (=1823+1428) 54.1% 3148 (=1842+1306) 55.5%
3 10496 7402 3391 (=1897+1494) 54.2% 3330 (=1909+1421) 55.0%
4 10720 7619 3484 (=1951+1536) 54.2% 3414 (=1999+1415) 55.2%
5 11155 8048 3689 (=2067+1622) 54.2% 3661 (=2069+1592) 54.5%
6 11300 8201 3752 (=2099+1653) 54.3% 3747 (=2101+1646) 54.3%
7 11588 8492 3884 (=2173+1711) 54.3% 3898 (=2237+1661) 54.1%
8 12051 8947 4090 (=2287+1803) 54.3% 4110 (=2355+1755) 54.1%
9 12505 9207 4204 (=2351+1854) 54.3% 4182 (=2357+1825) 54.6%
10 12512 9410 4297 (=2403+1894) 54.3% 4264 (=2448+1816) 54.7%

time unit in CPU click �TD = (TO � SPD)/TO � 100% �TB = (TO � SPB)/TO � 100%

APPENDIX C

COMPUTATIONAL EXPERIMENTS ON FARE

INFORMATION PROBLEMS

This appendix lists computation results of Dijkstra�s algorithm with binary

heap on datasets derived from Taipei transit system.

Table C.1. Average running time on problem set 1 for di¤erent OD group

Problem Set OD Groups DIJF
P1 1 4500
P1 2 4742
P1 3 5039
P1 4 5199
P1 5 5432
P1 6 5717
P1 7 5796
P1 8 6002
P1 9 6218
P1 10 6375

time unit in CPU click

Table C.2. Average running time on problem set 2 for di¤erent OD group

Problem Set OD Groups DIJF
P2 1 4748
P2 2 5021
P2 3 5282
P2 4 5388
P2 5 5587
P2 6 5851
P2 7 6064
P2 8 6116
P2 9 6328
P2 10 6615

time unit in CPU click

90

91

Table C.3. Average running time on problem set 3 for di¤erent OD group

Problem Set OD Groups DIJF
P3 1 4800
P3 2 5034
P3 3 5349
P3 4 5543
P3 5 5764
P3 6 5934
P3 7 6135
P3 8 6344
P3 9 6304
P3 10 6644

time unit in CPU click

Table C.4. Average running time on problem set 4 for di¤erent OD group

Problem Set OD Groups DIJF
P4 1 4933
P4 2 5156
P4 3 5415
P4 4 5593
P4 5 5745
P4 6 6080
P4 7 6173
P4 8 6338
P4 9 6529
P4 10 6708

time unit in CPU click

APPENDIX D

COMPUTATIONAL EXPERIMENTS ON FARE

INFORMATION PROBLEMS WITH ALTERNATIVE

FARE MODEL

This appendix lists computation results of Dijkstra�s algorithm with binary

heap using alternative fare model on datasets derived from Taipei transit system.

Table D.1. Average running time using alternative fare model on
problem set 1 for di¤erent OD group

Problem Set OD Groups DIJF
P1 1 2702
P1 2 2876
P1 3 3002
P1 4 3117
P1 5 3249
P1 6 3457
P1 7 3548
P1 8 3591
P1 9 3698
P1 10 3812

time unit in CPU click

Table D.2. Average running time using alternative fare model on
problem set 2 for di¤erent OD group

Problem Set OD Groups DIJF
P2 1 2837
P2 2 3004
P2 3 3147
P2 4 3271
P2 5 3397
P2 6 3580
P2 7 3613
P2 8 3730
P2 9 3851
P2 10 3916

time unit in CPU click

92

93

Table D.3. Average running time using alternative fare model on
problem set 3 for di¤erent OD group

Problem Set OD Groups DIJF
P3 1 2914
P3 2 3041
P3 3 3186
P3 4 3278
P3 5 3445
P3 6 3620
P3 7 3720
P3 8 3809
P3 9 3956
P3 10 3977

time unit in CPU click

Table D.4. Average running time using alternative fare model on
problem set 4 for di¤erent OD group

Problem Set OD Groups DIJF
P4 1 2907
P4 2 3021
P4 3 3235
P4 4 3336
P4 5 3451
P4 6 3679
P4 7 3713
P4 8 3863
P4 9 3949
P4 10 3957

time unit in CPU click

