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ABSTRACT

Optimal Paths Based on Time and Fares in Transit Networks

Michael Wang

In a public transportation oriented metropolis such as Tokyo or Taipei, transit
system is a convenient means for personal trip. Historically, most transit pas-
sengers rely on printed schedules for trip planning. However, the transit network
nowadays has become too complicated to navigate manually. With the advance
of technology, various navigation applications have been developed for guiding
private vehicles, but few are designed for public transportation. Given an origin,
destination, and intended departure time, this study proposes two timetable-based
algorithms to search for optimal itineraries so that the total travel time for an in-
dividual is minimized in an transit network. Itineraries showing the suggested
routes with walking access and egress, bus stops, and Mass Rapid Transit (MRT)
information will be generated, considering the time to wait for, to transfer be-
tween, and to stay in transit vehicles, as well as the time to walk between transit
stations. In addition, this study proposes an innovative fare-based algorithm to
search for the cheapest itineraries with non-linear fare structure, and an alterna-
tive fare model is specifically developed for Taipei transit system. Optimizing trip
planning according to time or fare meets the common practices of passengers using
transit system in a metropolitan area.

Keywords: shortest path, transit network, multimodal transportation, trip

planning, timetable-based algorithm, non-linear fare structure.
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CHAPTER 1

INTRODUCTION

With the rapid growth of economy since industrialization, traffic congestion
problem has become one of the most pressing issues of modern era. Public trans-
portation is regarded as an efficient method to alleviate traffic jam. The key
measure is to induce people to choose the public traffic vehicles but not their own
cars for personal transit. As Lam et al. [23] pointed out, the commonly adopted
promotion is to provide people with more contented riding conditions and quality
services. In this chapter, we will fist introduce the background and motivation
of our study, and then we will define our problem and methodology. In addition,
we will discuss the database and database management system for our study, and

describe the structure of the thesis in the end.

1.1. Background and Motivation

As public transportation systems become more and more complicated along
with urban expansion, public transportation users need more thorough information
to help them plan journeys efficiently. Since a metropolitan transportation network
usually involves a lot of bus or MRT (Mass Rapid Transit System) routes (see
Figure 1.1 for an illustration of subway system), there usually exists more than
one itinerary to connect any given origin-destination (OD) pair of locations at any
given time.

As a result, passengers may encounter several perplexities while conducting
their trips in a metropolitan area: First, an itinerary may not be easily identified
without the help of a good trip planning information system. The situation be-
comes even worse for visitors new to the area. Second, even if several itineraries

have been provided for guidance, different itineraries may have different profiles
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Figure 1.1. Subway systems of Osaka City, Japan

in the traveling distance, duration, and cost which make it more difficult for a

passenger to select the most suitable itinerary (see Figure 1.2 for an example of

multiple itineraries generated by the trip planning system of Massachusetts Bay

Transportation Authority, abbreviated MBTA). Besides, the itinerary profiles may

change over time due to the traffic uncertainty or occurrence of holidays. For in-

stance, in Taipei, the problem is not always about availability of services, but
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Figure 1.2. An itinerary generated by MBTA

sometimes about finding a suitable travel plan for specific personal trip prefer-

ence. Generally speaking, trip preferences that are entitled to determine the best

path include travel time, access and egress time, waiting time, walking distance,

the number of transfers, fares, level of comfort, etc. Among those trip preferences,

the least travel time and the lowest travel fare are the most common objectives,

and will consequently be the main themes of this thesis.



1.2. Problem Definition and Methodology

After reviewing previous works on public transportation trip planning, our
research focuses on two objectives: finding the shortest travel time through a
uniquely designed public transportation network structure in which timetable co-
ordination is an inherent feature, and generating an itinerary of lowest fare for a
trip on a transit network.

In respect of the first objective, for each stop in each bus or MRT route, suppose
the timetable that records the exact schedule of each arrival and departure time
is given, we are interested in devising techniques for generating an itinerary that
allows a passenger to travel in minimal time, given the origin, destination, and the
starting time of one’s trip. For the basic problem where walking is not a means
of transfer, a preprocessing algorithm is proposed to construct a specialized time-
space network, so that the conventional shortest path algorithms can be directly
applied to generate the itinerary of minimum travel time. Furthermore, since the
timetable-based transportation network is an acyclic diagram, topological ordering
algorithm, different from the variants of Dijkstra’s algorithm, can be applied to
find the quickest path more efficiently.

We then discuss a more complex situation: the passengers are allowed to walk
from one node (bus or MRT stop) to another. To solve this problem, a hierarchical
timetable-based network is introduced. In the hierarchical timetable-based net-
work, every unique transit route is a layer itself with transfer arcs connecting each
layer while the walking arcs do not exceed the designated distance. After connect-
ing artificial links between transit stations and origin and destination, Dijkstra’s
algorithm and topological ordering algorithm can be applied to obtain the quickest
path.

A functional transit itinerary planner should serve both computers and mobile
devices. However, the natures of mobile devices are so distinct from computers

that we need to develop solution techniques for them respectively. For computers,



such as application servers, a transit itinerary planner may be required to handle
multiple requests at the same time. The accessibility and concurrency control of
database are relatively critical. On the other hand, a transit itinerary planner
may only serve one person on a mobile device while the battery life and monitor
size are limited. In this situation, computational efficiency and display screen are
relatively vital. The focal point of this thesis is to improve computational efficiency
so that our transit itinerary planner can perform better on mobile devices. Based
on this axiom, we developed two speed-up techniques to improve computational
efficiency in the timetable information problems.

As for the second objective, two different models will be applied on the lowest-
fare problem. For each unique transit route, we assume that the travel cost be-
tween every OD pair is known. After links between different routes, links between
pseudo origin and transit stations, and links between pseudo destination and tran-
sit stations are connected, a fare-based transportation network is thus constructed.
However, we use two different approaches to assign costs to arcs. The first ap-
proach constructs arcs so that every unique transit route is a complete graph itself
to represent cost between every transit station. There will be no cost assigned to
transfer and artificial arcs. As for the second approach, we assign different arc
costs to transit routes with fixed fare rate and variable fare rate. In this model,
in-route arcs only connect adjacent nodes to reduce the number of arcs. Some
rules, such as the first transfer to bus from MRT is free, could also be imposed
through the second approach. After connecting the arcs and assigning the costs,
common shortest path algorithm, such as Dijkstra’s algorithm, can be applied to

obtain the cheapest path.

1.3. Database and Database Management

The amount of information on transit network available to us is massive. To

get the most out of these large and complex datasets, tools that simplify the tasks



of managing the data and extracting useful information in a timely fashion are
required. Otherwise, data can become a liability, with the cost of acquiring it and
managing it far exceeding the value derived from it.

A database is a collection of data, typically describing the activities of one or
more related organizations. A common database might contain information about
entities and relationships between entities. A database management system, or
DBMS, is software designed to assist in maintaining and utilizing large collections
of data. The need for such systems, as well as their use, is essential nowadays.
Many kinds of database management systems are in use, but our study applies
relational database system (RDBMS).

From the earliest days of computers, storing and manipulating data have been
a major application focus. In the late 1980s and the 1990s, advances were made in
many areas of database systems. Considerable research was carried out into more
powerful query languages and richer data models, with emphasis placed on sup-
porting complex analysis of data. The data is mostly stored in a relational DBMS
and the application layer can be customized to different users. Most significant,
perhaps, DBMSs have entered the Internet Age. While the first generation of web-
sites stored their data exclusively in operating systems files, the use of a DBMS
to store data accessed through a Web browser is becoming widespread. Queries
are generated through Web-accessible forms and answers are formatted using a
markup language such as Hypertext Markup Language (HTML) to be easily dis-
played in a browser. Database developers are also adding features to their DBMS
aimed at making it more suitable for deployment over mobile devices. With the
emergence of database, we are now in a much friendlier environment for developing
software dealing with large amount of data.

Throughout our research, we use Microsoft Access 2007 to exchange data
with transit network databases on MySQL through Open Database Connectiv-

ity (ODBC).



1.4. Structure of Thesis

This thesis is organized as follows: Chapter 2 reviews fundamentals regarding
algorithms, and previous works on timetable-based and fare-based public trans-
portation trip planning; Chapter 3 defines the basic timetable-based network struc-
tures and gives solution methods to find the quickest path based on a query;
Chapter 4 defines the multimodal timetable-based network structures that allow
walking between nodes and gives solution methods to find the optimal choice;
Chapter 5 defines the fare-based network structure and gives solution methods to
find the cheapest path; Chapter 6 summarizes our thesis and contribution, and

then points out some directions for future research.



CHAPTER 2

LITERATURE REVIEWS

In order to minimize travel time and reduce traffic congestion, Hall [16] pointed
out that Multimodal Advanced Traveler Information System (MATIS) was devel-
oped to provide travelers with better information. Transit Advanced Traveler
Information System (TATIS), part of MATIS, offers features that aid travelers
to plan their journey. Koncz et al. [21] mentioned that TATIS has also been
referred to by other names, such as Transit Information System (TIS), Passenger
Information System (PIS), and Advanced Public Transportation System (APTS).
However, TATIS was not initially designed to accommodate individual user pref-
erence but to provide the general public with static travel information. Therefore,
in order to make transit itinerary planner applicable on platforms such as Internet
or personal digital assistance (PDA), we need to design different computational
techniques, algorithms, and itinerary display. In this chapter, we will first glance
through the development of trip planning system, and then review different aspects

of user preferences in transit trip planning.

2.1. Trip Planning Systems

In a highly urbanized society, such as Taipei, accurate and timely travel infor-
mation can help travelers reach their destinations quickly and safely. To serve this
need, Mouskos and Greenfeld [32] indicated that MATIS uses computers to pro-
vide pre-trip and en route travel information to help travelers choose the safest and
most timesaving path. The history of using computers to provide transit informa-
tion could be traced back to 1970s according to Cathey and Dailey [3]. Initially,
MATIS was designed to assist drivers or passengers making pre-trip travel plan-

ning by learning of traffic condition to avoid congestion or constructions. However,



with the breakthrough in computer science and communication technology, the ap-
plication of geographic information system (GIS) on transit trip planning was first
introduced by Koncz and Greenfeld [22], and later expanded by Peng and Huang
[38]. With the rapid progress in accessibility, Yang and Huang [54] suggested
that transit information not only benefits travelers, but also improves the utiliza-
tion of transit system. As Levinson [25] inferred, reducing travelers’ exposure to
congestion and confusion reduces their anxiety, and allows efficient calculation of
routes.

Wu et al. [52] reckoned that Internet is one of the emerging technologies
that can serve as an interactive platform for MATIS systems. Some trip plan-
ning systems have already been implemented over the Internet, such as MBTA
(http://www.mbta.com/), or Osaka’s kotsu (http://www.kotsu.city.osaka.jp/). In
addition to Internet, Chen et al. [5] mentioned that wireless communication tech-
nologies have made travel information more accessible to travelers on the go. Es-
pecially, in the new era of the third generation of mobile phones standards and
technologies (3G), network operators could offer users a wider range of more ad-
vanced services while achieving greater network capacity. and spectrum efficiency.
This improves the delivery of travel information to mobile users. For example,
MBTA offers its trip planning services on PDA to subscribers of 3G network. In
addition, wireless local area network (WLAN) technologies, such as 802.11g, bring
easily-accessible wireless broadband access to users. Wu et al. [52] proposed that
a large-scale deployment of WLAN over campus or community can serve as a chan-
nel for providing trip planning service to travelers. These emerging technologies
would undoubtedly enhance future development of MATIS.

In order to help travelers utilize the massive and complicated transit network,
TATIS was thus developed. TATIS is one of the facets of Advanced Traveler Infor-
mation System (ATIS), and itinerary planning is one of the principal components

of TATIS. In Yin et al. [55] and Taniguchi and Shimamoto [45], the purpose
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Figure 2.1. Tllustration of TATIS [38]

of itinerary planning is to assist travelers in choosing the optimal path to their
destinations in terms of travel distance, travel time, or other criteria. However,
Rehrl et al. [40] argued that TATIS lacks the ability to accommodate personalized
options, such as preferred arrival or departure time. In the thesis, we will propose
several methods to generate itineraries that meet user specifications. Illustrated
in Figure 2.1, itinerary planning incorporates two major elements: route compu-
tation and route display. The goal of route computation is to find a connected
sequence of transit route segments from a user-defined location to a destination.
Route computation may be based on criteria such as the shortest travel distance,
quickest travel time, or lowest fare specified by the users. According to Caulfield
and O’Mahony [4], the goal of route display is to effectively present the optimal
route to the traveler for guidance. Shortest path algorithms are the essence of

route computation. We will review some shortest path algorithms in section 2.2.
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2.2. Shortest Path Algorithms

In this section, we will introduce the basic concepts of shortest path algorithms
that will be needed later throughout the thesis.

Shortest path algorithms are central to most network and transportation prob-
lems. In Zhan and Noon [56], the application of fifteen different algorithms on real
road networks indicated that it is worthwhile to apply Dijkstra’s algorithm to solve
one-to-one or one-to-some shortest path problems. Dijkstra’s algorithm, the clas-
sical single-source shortest path algorithm, is a greedy algorithm that solves the
single-source shortest path problem for a weighted, directed graph where all edge
weights are nonnegative. In latter section, we will see that most of the timetable-
related problems could be solved by Dijkstra’s algorithms or its variants.

The algorithm works by maintaining a distance label d(i), which is an upper
bound on the length of shortest path to each node 7, and the states of temporarily
labeled and permanently labeled with each node. Initially, the distance label is zero
for the source node s, and infinity for all other nodes, representing the fact that
we do not know any path leading to those nodes. When the algorithm terminates,
the distance label will be the cost of the shortest path from the source node s to
the destination node ¢, or infinity if no path exists between s and .

The algorithm maintains two sets of nodes, S and (). Set S contains all nodes
whose distance labels have been permanently labeled, and set () contains all other
nodes. Set S is initially empty, and in each step, the node with the smallest
distance label is moved from @) to S. As a node u is moved into S, the algorithm
relaxes every outgoing arc from u to see if any improvement could be made on the
shortest known path to v by first following the shortest path from the source to
u, and then traversing the arc (u,v). If the distance label of node u plus the arc
length of the arc from u to v is smaller than the distance label of v, the algorithm

updates the distance label d(v) with the new smaller cost.
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Table 2.1. Some implementations on Dijkstra’s algorithm

Abbreviation Implementation Complexity Reference
DIKQ Naive implementation O(|V|?) [10]

Using buckets structure

DIKB Basic implementation O (|E|+ |V|C) 9]

Using heap structure

DIKF Fibonacci heap O(|E|+ |V]log|V]) [11]

DIKH k-array heap O (|E|log|V]) 8]

DIKR R-heap O (|E|+|V]log (C)) [2]

At termination, when () = @, the shortest path, if one exist, is found. The
running time of Dijkstra’s algorithm depends on how the priority queue is im-
plemented. There are various implementations with Dijkstra’s algorithm such as
Dial’s implantation of buckets structure and implementation of Fibonacci heap.
In Dijkstra [10], by using a naive implementation, in a graph G = (V, E), the
running time of Dijkstra’s algorithm was O(|V|*), where V is the number of nodes
and E is the number of arcs. However, there are many techniques to improve the
running time of Dijkstra’s algorithm, and some of the most popular implementa-
tions and their efficiencies are listed in Table 2.1. (In a graph G = (V, E), and C

is the maximum arc length in G.)

2.3. Timetable Information Problems

The calculation of minimum paths in a transportation network is a well-
developed part of transport network modeling. In comparison to the huge number
of publications devoted to the shortest path algorithms for highway networks, only
a few literatures discuss issues of finding minimum paths for public transportation
networks. Although some features of public transportation networks appear sim-
ilar to highway networks, some are fundamentally different. For instance, transit
vehicles in public transportation networks are not available at call, and hence trip
planning must include a cushion for waiting time. Therefore, a route transfer

waiting time must be included in the trip planning. Moreover, changing from
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one route to another must be made accordingly to timetables of each route. This
problem had been identified by many researchers [44, 12], who argued that algo-
rithms developed for highway networks or road networks for private vehicles are
not suited for public transportation networks because of some fundamental differ-
ences between transit network and other networks. Chriqui [7] first discussed the
problem of “common bus line”, where some bus routes share common sections and
a passenger must select the buses he intends to use. Huang and Peng [19] pointed
out that services in a transit system are controlled by their timetables. For these
reasons, a different approach must be used in calculating shortest paths in transit
networks.

According to Muller-Hannemann et al. [33], one of the most important timetable
problems is the earliest-arrival problem. In this problem, the goal is to find a train
connection from a departure station A to an arrival station B that departs from
A not earlier than a given departure time and arrives at B as early as possible.
Although the earliest arrival problem has been studied, details like transfer rules
and traffic days are neglected. Most studies [46, 37, 34, 41] modeled the earliest
arrival problem as a shortest path problem in a static graph and solve the problem
by applying variants of Dijkstra’s algorithm.

In reality, we note that any minimum path in a transportation network using
distance as the arc length without considering transfers between transit routes and
timetable information is not so useful. Because considering only distance implicitly
assumes that the transit vehicles are ready to run on any route at any given time,
and thus transfer time and waiting time for the next available vehicle would be
neglected. Therefore, a timetable-based network that takes both the transit route
and timetable into consideration is more practical for seeking shortest paths in a
public transportation network.

Tong and Richardson [46] proposed a network file from time schedules. The

file contains records of all the arcs in the network and provides the input data for
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executing the algorithm. However, their network structure only records the daily
frequency that a vehicle passing through an arc, which is not completely compati-
ble with the timetable information. In Huang and Peng [19], an objected-oriented
GIS data model for the transportation network was developed to simplify the net-
work structure. Their model provides more flexibility than traditional network
structure. For example, stops at a street intersection, a transit center, or across a
street on a street segment can be grouped as a stop group. Although their network
is designed to incorporate timetable information, some path choices are skipped
during network construction, and thus the optimal choice may be lost during the
search process. Lo et al. [26] proposed a state-augmented multi-modal (SAM)
network. In this network, arcs are classified into two groups: transfer links and
direct in-vehicle links. Because SAM network is designed to accommodate transfer
rules and transit fare, the timetable information is not included. Therefore, SAM
network is not suitable for timetable-based transportation network.

In addition to timetable coordination, Schulz et al. [42] suggested that com-
putation efficiency is another important requirement for finding optimal path in
public transportation networks, especially when they are implemented in Internet
or mobile-device trip-planning applications. In Internet or mobile environment,
Peng et al. [39] reckoned that people may not have the enough time, and it may
consume too much battery power for the software application to run for more than
a few seconds. Therefore, as said in Hickman [17], performance is the key in these
environments.

Tong and Wong [47] pointed out that an all-or-nothing assignment procedure
could be used in which all flows are assigned to the minimum generalized cost
itinerary. Schulz et al. [41] demonstrated that a modified Dijkstra’s algorithm
can find the shortest path with realistic timetable data of the German railway
company. Huang and Peng [19] developed two schedule-based optimal-path algo-

rithms, forward search and backward search, based on traditional shortest-path
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algorithms. In Wu and Hartley [53], a forward search shortest-path algorithm was
developed for bi-modal (bus and walking) network. In the studies by Huang and
Peng [19] and Wu and Hartley [53], the concepts of the algorithms were similar,
but the network structures are different. The former includes timetable informa-
tion as a node attribute, the latter transforms timetable information into cost
(travel time) of arc and starting time at a station. In both situations, however,
some of the paths that may have late departure from an origin but early arrival
to a destination are neglected, and thus the optimal path may not be found. All
of these studies employed variants of Dijkstra’s algorithm, which is in fact can be
further improved using the algorithm of topological ordering from Ahuja et al.[1],
since a timetable-based network is an acyclic directed diagram.

In a trip-planning system, a query generally defines a set of valid connections,
and an optimization criterion on that set of connections. In other words, the
system is to find the optimal connection with respect to the specific criterion.
Muller-Hannemann et al. [33] mentioned that the most fundamental query is
referred to as the earliest arrival problem. In an earliest arrival problem, given
a query that consists of an origin node , a destination node , and an earliest
departure time , one has to seek a feasible route that starts from and is composed
by valid connections in a timetable-based network such that the difference between
the arrival time at and the departure time at is minimized. Note that connections
are valid only if they do not depart before the given earliest departure time to.

However, Wong et al. [51] indicated that most of the studies on timetable
problem had focused on single-mode public transportation. Because it is a common
phenomena for a public transportation network nowadays to comprise more than
one mode, Lo et al. [27] inferred that developing a multimodal route finding

system has become an important issue.
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2.4. Multimodal Transit Problems

Nes and Bovy [35] defined the term multimodal as the combination of dis-
tinct functional and technical modes of transportation within a trip from origin
to destination. The term mode indicates different forms (in a vehicular or func-
tional sense) of transportation. This may consist of different vehicles, such as car,
bicycle, tram, bus, train, or other different services (such as taxi). McCormack
and Roberts [29] mentioned that it would be difficult to model multi-modal trip
planning systems, especially those which consider both transit and road networks,
with information sources supplied in a great variety of different formats.

For a multimodal trip that consists of two or more journeys with different
modes, a transfer by foot is sometimes necessary. In Wu and Hartley [53], walking
links were added into the transportation network to address bi-modal (walking
and bus) problem, but the walking links were limited to travel from origin to the
nearest transit station and to walk the transit station closest to the destination to
the destination. While the travel time on bus could be computed with timetable
information, for traveling on foot, distance between any pair of nodes requires
calculation according to their location. Therefore, data such as longitude and
latitude is essential in node information to model walking problem. In Koncz et al.
[21], average walking speed and Euclidean distance were used to calculate walking
time (or cost) to solve the more general multimodal problem. The average walking
speed was set at 3 kilometer per hour, and thus the walking time is the result of
walking distance divided by average walking speed. In their study, incorporating
walking between transfer nodes into published transit timetables was mentioned
as a future work.

According to Vuchic [48], in a multimodal transit network, there are primarily
two types of transport. One is the bus-type transport. However, Horn [18] pointed
out that the bus-type transport is basically a subset of the road network, but the

freedom for travel is restricted to certain fix routes and timetables. In general,
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paths for bus-type transport must begin and end at stops (or stations) and trips
can be made only at the times specified in timetables. Another type is the rail-type
transport. As Wong et al. [51] inferred, the rail-type transport is similar to the
bus-type transport but independent of the road network. McCormack and Roberts
[29] suggested that one of the important considerations for multimodal trips is
whether interchanges are possible within the constraints of time and distance. In
some situations, these two types of transport would offer different types of service;
for instance, the bus-type transport may not obey any schedule while rail-transport
follows some fixed timetables. To simplify the problem, we assume that all public
transportation operated accordingly to pre-determined timetables.

On the basis of transport assignment method, Le Clercq [24] mentioned that
several researches [36, 13] had proposed a route choice strategy, hyperpath. Hy-
perpath, connecting the origin to the destination, has the property that at each
stop-node, the passenger awaits only a subset of the available transit lines. In
Lozano and Storchi [28], shortest viable hyperpath was designed to address to
multimodal problem. In a multimodal transit network, some sequences of trans-
portation modes are illogical for transit users. For example, it is very unlikely for
a traveler to board MRT, then transfer to bus, then switch back to MRT, and then
alights from MRT and board bus again. Therefore, this sequence of transportation
modes could be ignored in the transit network. Hyperpath is a method for assign-
ment models, and assignment models are based on transit service frequencies and
passenger distribution. In our study, each transit route is given a fixed timetable,
so hyperpath is not applicable. However, the concept of eliminating unrealistic

travel patterns may be useful in reducing the number of arcs in a transit network.

2.5. Fare Problems

As Lo et al. [26] inferred, for journey planning purposes, transportation modes

may consist of different fare structures, and some of them are non-linear. Sen et
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al. [43] pointed out that, for routing problems with non-linear fare structures,
the literature is very sparse. Horn [18] further indicated that some fare structures
in public transportation are zone-based (fare will remain constant over a certain
number of stops), while others may be distance-based (with the fare increase
linearly or non-linearly as the travel distance increases), and some may possess
provision for group concessions (such as discount for students).

McCormack and Roberts [29] suggested that traversing a journey with timetable
will mostly likely not depend on factors such as distance and speed of travel, but on
fares tables and concessions depending on traveler’s status. In Lo et al. [26], these
non-linear fare structures made route costs non-additive, and thus total travel cost
cannot be determined by simply adding up the costs of individual links, making
this problem non-trivial.

In some situations, composite cost comprising a weighted sum of travel costs is
applied. According to several researches [30, 31, 15, 26|, this method is useful in
finding an optimal path accommodating two or more possibly conflicting criteria.
For example, one can assign different weight to waiting time for transfer and travel
time in vehicle while optimizing a trip both for time and number of transfers.
However, to simplify the problem, we assume that cost, in monetary unit, has
equal value under all circumstances. In other words, the weight of cost is one for
any link. Furthermore, we would adopt fixed fare tables in which cost between
any two stations is known. This will give us a complete graph of the fare-based

network, and thereby help us find the cheapest route.



CHAPTER 3

METHODOLOGIES ON A BASIC TIMETABLE

INFORMATION PROBLEM

We first consider the basic timetable information problem in which users select
the origin transit station, destination transit station, and intended departure time.
In this basic timetable information problem, we will not consider walking as a
transfer means. The problem that takes walking as a transfer means will be
discussed in the next chapter.

In order to simplify the timetable-based transit network, we made some as-

sumptions in advance:
Assumption 3.1: There is no congestion in the transit system.

Since there is no congestion in the transit system, there should be no delay

during all journeys. Thus we could make the following assumption:

Assumption 3.2: All transit vehicles arrive at or depart from each station

accordingly to the timetable.

To transfer from one transit route to another transit route at the same physical
location, it would take a passenger a certain amount of time to alight and board.

To simplify this situation, we assume that

Assumption 3.3: The time to alight a transit vehicle and then board an-
other transit vehicle immediately is constant.
Assumption 3.4: All passengers’ origins and destinations are transit sta-

tions.

19
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Table 3.1. Nomenclature for the basic timetable information problem

SENS<S

S QL

<.

S+ o33~

£
<

D

set of arcs in transit network G

set of arcs in timetable-based network G

set of non-stop arcs in timetable-based network G

set of route-transfer arcs in timetable-based network G

transit network; G = (N, A)

timetable-based network; G = (V, E)

the number of line routes in G

set of nodes in transit network G

maximum number of RFy, k=1,..., K

the arc sequence in Route k in G, k=1,..., K

the frequency of dispatching transit vehicle in Ry,

set of line route segments that are associated with node i, 2 € N

the ['!' line route segment in RS;, [ =1, ..., | RS

set of line route segments that arrive at node 7, 1 € N

set of line route segments that depart from node 7, i € N

the modification of T'RS; with some consecutive duplicated times removed
set of times that line route segments in RS; take place in node i, 1 € N
the time that the route segment RS! take place in node i, i € N

the time to alight a transit vehicle and then board another transit vehicle
set of | N| groups of nodes in timetable-based network G

a node group composed by a set of |T'Ry| copies of destination node d, d € N
a node group composed by a set of |T'R;| copies of node i, i € N

a node group composed by a set of ]TRJ-] copies of node 7, j € N

a node group composed by a set of |T'R,| copies of origin node 0, 0 € N
requested destination of user query

anarciné,eGE

node in transit network G; 7,5 € N

the index of line route in transit network G

the ordinal number of line route segment in transit network GG

the physical location of the origin of a line route segment RSf in RS;
the physical location of the destination of a line route segment
requested origin of user query

the index of the route that passes node ¢

the arrival or departure time associated with a line route segment
intended departure time of user query

node in timetable-based network é, u,v eV

origin node in transit network, vg = (d,r, TRSY, Tx4) € V4
destination node in transit network, v, = (0,7, TRS, Tx,) € V,
pseudo destination constructed in algorithm EAB

pseudo origin constructed in algorithm EAB

number of queries with unique OD pairs

the origin of a non-stop arc in timetable-based network G

the origin of a route-transfer arc in timetable-based network G

the destination of a non-stop arc in timetable-based network G

the destination of a route-transfer arc in timetable-based network G
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Figure 3.1. A simple transit network
3.1. Spatial Data and Temporal Data

Let digraph G = (N, A) represent a transit network where N denotes the set
of nodes and A denotes the set of arcs. A node in N represents some physical
location where a transit vehicle can stop to pick up passengers, such as bus stop,
port, or train station. Each node in N belongs to at least one line route. A
line route is a set of nodes which transfer is not required to travel between them.
For example, in Figure 3.1, we can take Route 1 to travel from node 1 to node 3
without transfer. Thus Route 1 is a line route. A directed arc (7, j) € A represents
a direct connection (i.e. non-stop route segment) from node i to node j in a line
route. Suppose there are K line routes in G, and Ry records the arc sequence in
Route k for k = 1,..., K. The number of segments in R} equals to |Ry|. Take
Figure 3.1 for example, there are 4 nodes and 5 arcs, where Route 1 is composed
by arc (1,3), Route 2 by arcs (1,3) and (3,4), Route 3 by arc (1,2), and Route
4 by arc (2,4), respectively. Thus Ry = [(1,3)], Rs = [(1,3);(3,4)], Rs = [(1,2)],
and Ry = [(2,4)]. These topological connection relations can be stored as spatial
data in a table shown as Table 3.2. Note the presence of parallel arcs (e.g. (1,3)
and (1,3) in Figure 3.1) in the transit network; there is often more than one line

routes between two stops.

To calculate the quickest path, one further requires the timetable information,

referred as the temporal data. If two line routes with same arc sequence have
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Table 3.2. Line route information

Segment No. Route No. Route Segment

Route 1 : Node 1 — Node 3
Route 2 : Node 1 — Node 3

: Node 3 — Node 4
Route 3 : Node 1 — Node 2
Route 4 : Node 2 — Node 4

U W N+~

different timetables, they should be taken as a different line routes. A timetable
consists of data concerning nodes, line routes, and the departure and arrival times
of the transit vehicles. Let RF}, denote the frequency of Ry (i.e. how often is a
transit vehicle dispatched in a line route) and RS; = RSD; U RSA; be all the
line route segments associated with node 7, where RSD; and RS A; represent the
sets of line route segments that depart from and arrive at node i, respectively.
For each route segment RS!, [ = 1,...,|RS;| associated with node i € N, we
record TRS! as the time that the route segment RS! takes place in node i. Thus
ITRS;| = |RS;| = |RSD;| + |RSA;|. With timetable information embedded,
different arrival and departure times for a node in a line route will create different
line route segments. For example, referring to Table 3.2 and Table 3.3, there are 9
line route segments associated with node 1, which are (m,n,r,t) = [(1, 3, 1, 8:01),
(1, 3, 1, 811), (1, 3, 1, 821), (1, 3, 2, 800), (1, 3, 2, 815), (1, 3, 2, 830), (1, 2,
3, 8:05), (1, 2, 3, 8:15), (1, 2, 3, 8:25)] where m is the origin of each line route
segment, n is the origin of each line route segment, r is the index of line route,
and t is the departure or arrival associated with the line route segment.

To further simplify the problem, we assume that for any consecutive line
route segments (7,7) and (i,7) on Ry, the arrival of (¢;7) and departure of (i,7)
happens at the same time at node i. As a result, we can remove some con-
secutive duplicated times in the vector T'RS; when node i is an intermediate
node in Ry, and save the modified vector as T'R;. Note that |TRS;| = |TR;| +

D kinode i is an intermidate node in &, 10Eks Since each time when a route passes through
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Table 3.3. Timetable information for each route

Route 1 Route 2 Route 3 Route 4
Node 1 | Node 3 | Node 1 | Node 3 | Node 4 | Node 1 | Node 2 | Node 2 | Node 4
1| 8:01 8:21 8:00 8:23 8:30 8:05 8:15 8:00 8:15
8:11 8:31 8:15 8:38 8:45 8:15 8:25 8:14 8:29
3| 8:21 8:41 8:30 8:53 9:00 8:25 8:35 8:28 8:43

node i, either its arrival or departure time will be doubly counted in |T'RS;|. Fur-
thermore, the departure time of each line route segment is always later than or
equal to the preceding arrival time (except the first one, which has no preceding
arrival time); that is TRS! < TRS!if | < I. Thus any passenger alight a line route
at some intermediate node will not be able to take any earlier dispatch at the same
node. To comprehend more thoroughly, let’s look at the following example.
Table 3.3 is the timetable for the simple transit network in Table 3.2, where
all routes have three departures (i.e. RFy = 3 for k = 1,2,3,4). Node 1 has 9
departure line route segments and 0 arrival line route segments, thus |[RSD;| = 9,
|[RSA;| =0, and |TRS:| = |TR;| = [8:00, 8:01, 8:05, 8:11, 8:15, 8:15, 8:21, 8:25,
8:30]. Similarly, |RSDs| = 3, |RSA| = 3, and |T'RS;| = |T Rs| = [8:00, 8:14, 8:15,
8:25, 8:28, 8:35]; |RSDs| = 3, |[RSAs| = 6, [TRS3| = [8:21, 8:23, 8:23, 8:31, 8:38,
8:38, 8:41, 8:53, 8:53|, and |T'R3| = [8:21, 8:23, 8:31, 8:38, 8:41, 8:53|; |RSD,| = 0,
|RSA4| =6, and |TRSy| = [8:15, 8:29, 8:30, 8:43, 8:45, 9:00]. Since RF} = 3 and

node 3 is an intermediate node in Ry, 8:23, 8:38, and 8:53 are duplicated in T RSj3.

3.2. Construction of a Basic Timetable-based Network

To calculate the itinerary with the shortest travel time in a transit network,
one requires incorporating the temporal information into the transit network. To
this end, here we propose a preprocessing algorithm to construct a time-space
network called the basic timetable-based network, denoted by G' = (V, E), where

V is a set of | V| groups of nodes and £ = FD U EX consists of the non-stop arcs
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(ED, arcs that are in the same line route) and route-transfer arcs (EX, arcs that
connect different line routes).

A node group V; C V for each i € N is composed by a set of |[T'R;| copies
of node i € N, where each copy corresponds to a specific time associated with a
line route segment connecting 7. Thus |[V/| = ..\ |[TR;|. For our convenience,
four tuples, (i,r, TRS!, Tz;), are used to describe each node v € V in the basic
timetable-based transportation network, where ¢ corresponds to a physical location
of node i € N, r represents the index of the route that passes i, TRS! records
the time of the I route segment in RS; arriving at or departing from node i
(e.g. 8:15), and T'z; is the time to alight a transit vehicle and then board another
transit vehicle (e.g. 2 minutes) set by the users.

Each non-stop arc (a, 3) € E'D represents each line route segment in |,y RS;,
and its end nodes correspond to the end nodes of that line route segment at a
specific time. That is, if « € V; and § € V}, then ¢ # j. Furthermore, |ED| =
> icn | 2Si|. The orientation for a non-stop arc follows the sequence of the nodes
appeared in its corresponding line route segment. Thus a non-stop arc is directed
from a node of earlier time to a node of later time, and we set its length to be the
duration of its corresponding line route segment, or in other words, the difference
in time on its end nodes. On the other hand, each route-transfer arc (&, B) e EX
connects two nodes of the same physical location (i.e. if @ € V; and B eV,
then ¢ = j) but different times, as long as the time difference of end nodes does
not exceed the time for route change. In particular, for each route-transfer arc
(&,B) € FX where & = (i,rl,TRSf-l,Tmi) and [ = (i,TQ,TRS?,Txi) correspond
to some physical location ¢ € N, its orientation directs from v to v and its length

can be set as TRSf2 — TRSH

', which is greater than or equal to T'z;. Therefore,

the number of route-transfer arcs connecting nodes in V; C V is at most O(|V;[*),

and thus [EX| = O(X,cx [Vil%).
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Now we give steps of our preprocessing algorithm CBTBN (Constructing the

Basic Timetable-based Network) as follows:

Step 1: Read the spatial data (e.g. Table 3.2) and temporal data (e.g.
Table .3.3), store data in N, A, RS, RSD, RSA, TRS, TR.

Step 2: For each node i € V| we store each node the defined four tuples
(i,r, TRS!, Tx;).

Step 3: Construct each non-stop arc («, 3) € ED, using V and RS.

A

Step 4: Construct each route-transfer arc (&, 5) € EX, using V.

and |B| = |ED| + |EX| = Yen [RSi| + O(Licy Vil") = O(KQIN| + IN*),
which means the size of G is a polynomial function of the size of G (i.e. |N|) and
the input temporal data (i.e. K and Q). In other words, algorithm CBTBN can
construct a basic timetable-based network in time polynomial to the input data
sizes | N|. Moreover, each arc in G always directs from a node of earlier time to a

node of later time, which means G is an acyclic diagram.

3.3. Query and Solution Method on the Basic Timetable-based

Network

In this section, we design an algorithm to solve the earliest arrival problem on
the basic timetable-based network, and then demonstrate this procedure with the
simple transit network shown in Figure 3.1. Since the timetable-based network is
acyclic, we can apply topological-ordering-based algorithms to solve the shortest

path problem.

3.3.1. Procedures

Depending on the locations of the requested origin o and destination d, as well

as the starting time ¢, of the query, we would like to identify a feasible itinerary
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of the minimum travel time from o to d in G. Here we give an algorithm called
EAB (stands for Earliest Arrival for Basic timetable-based network) with steps

as follows:

Step 1: Read the basic timetable-based network G, as well as all the related
data structures.

Step 2: Read the indices of the requested origin o and destination d, and
the starting time t,.

Step 3: For each (u,v) € E, where u = (i,7, TRS!, Txz;) with TRS! < t,,
remove it from F.

Step 4: Remove those route-transfer arcs whose both end nodes are in V,
or V.

Step 5: Construct a pseudo origin w,, a pseudo destination w,, artificial
arcs (w,,v,) for each node v, = (0,7, TRS!, Txz,) € V, with nonnegative
length equal to TRS’ < t,, and artificial arcs (v, wy) with zero length
for each node vy = (d,r, TRSY, Txy) € Vy with TRS!) > t,,.

Step 6: Solve a shortest path from w, to wy in G using any shortest path
algorithm.

Step 7: Output the calculated shortest path, which corresponds to the

quickest itinerary as requested.

In particular, based on the basic timetable-based network G, Step 3 first elim-
inates arcs that are too early for the user; Step 4 removes those route-transfer arcs
inside the node groups corresponding to o and d since one can only changes line
routes at intermediate nodes but not the origin and destination; Step 5 connects
the pseudo origin and pseudo destination to their corresponding nodes that serve
as the start and end of the request itinerary. At this moment, algorithm EAB
has already incorporated the query information into the modified basic timetable-
based network. Since the length of each arc in the modified basic timetable-based

network either represents the duration of a line route segment (for a non-stop arc),
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the time to transfer between line routes (for a route-transfer arc), or the waiting
time before boarding a transit vehicle (for an artificial arc connecting to nodes
in V,), a shortest path in the modified basic timetable-based network is thus an
itinerary with the shortest travel time from o to d starting from time ¢,.

Since the artificial arcs added to G also direct from nodes of earlier time
to nodes of later time, the modified basic timetable-based graph is still acyclic.
For seeking a shortest path in an acyclic diagram of |V| nodes and |E| arcs,
the topological ordering algorithm [1] can be modified to solve a shortest path
in O(|E]) time, which is theoretically the most efficient since any shortest path
algorithm takes at least (2(|E|) time to read the input network. To our surprise,
the point of using a topological ordering algorithm to seek a shortest path in
a time-space network seems to have been neglected in the literatures. Most of
the related researches exploit variants of the Dijkstra’s algorithm, and that takes
O(|E| + |V|log |V|) time by Fredman and Tarjan [11]. Empirically speaking, the
results of the computational experiments conducted by Cherkassky et al. [6] and
Wang [49] also indicate that topological-ordering-based algorithms such as the
algorithms by Goldberg and Radzik [14] and Wang et al. [50] are more efficient
than variants of Dijkstra’s algorithm to solve shortest paths in an acyclic diagram.

For solving the shortest path itinerary problems for multiple (say, y > 1)
OD pairs, we only need to construct the basic timetable-based network once and
repeats Step 2 through Step 7 for y times, rather than constructing the basic
timetable-based network from the scratch for y times. Furthermore, such a prob-
lem is also a good practice for applying the multiple pairs shortest path algorithm
by Wang et al. [50], which is designed for solving shortest paths for multiple
OD pairs on a network of fixed topology (in our case, the basic timetable-based

network).
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Figure 3.2. A timetable-based transportation network

3.3.2. An Illustrative Example

To demonstrate the formulation of our basic timetable-based transportation net-
work, consider a transit network consisted of four transit routes and four nodes
as shown in Figure 3.1 and Table 3.2. Table 3.3 gives the timetable of this transit
system.

In this example, if a transfer is needed at any node, a two-minute time period is
required. In other words, Tz; = 2 for each node 7 € N. Suppose that a passenger
plans to travel from node 1 to node 4 with a planned departure time of 8:10.
Then, our algorithm EAB eliminates unqualified arcs from the basic timetable-
based network that has been stored in the memory, adds pseudo nodes and artificial
arcs to construct a modified basic timetable-based network as shown in Figure 3.2,
and solve a shortest path from the pseudo origin to the pseudo destination. In
this case, the itinerary with the minimum travel time will be starting from node

1, taking the bus of route 3 on 8:15, getting off the bus at node 2 on 8:25, taking
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Table 3.4. Nodes information of basic timetable-based network

St (1, 2,800, 2) || S0 | (2, 4, 8:00,2) || S16 | (3, 1, 8:21, 2) || Sao | (4, 4, 8:15,2)
Sy | (1,1, 8:01,2) || Si1 | (2, 4, 8:14, 2) | Si7 | (3, 2, 8:31, 2) || Saz | (4, 4, 8:29,2 )
53 (1, 3, 8105, 2) 512 (2, 3, 8:15, 2) 518 (3, 1, 8:31, 2) S24 (4, 2, 830,2)
Syl (1,1,8:11,2) || Si3 | (2, 3, 8:25,2) | Sio | (3, 2, 8:38, 2) || Sas | (4, 4, 8:43,2)
Ss | (1,2, 8:15,2) || Sia | (2,4, 8:28,2) || Sog | (3, 1, 8:41, 2) || Sag | (4, 2, 8:45,2 )
Se | (1,3, 8:15, 2) || Si5 | (2, 3, 835, 2) || Sa1 | (3, 2, 8:53, 2) || Sar | (4, 2, 9:00,2 )
Syl (1,1, 8:21, 2)
Sg | (1, 3, 8:25, 2)
Sy | (1,2, 8:30, 2)

the bus of route 4 on 8:28, and arriving at node 4 on 8:43. Table 3.4 demonstrates

the information stored in each node.

3.4. Computational Experiments

This section summarizes our computational results of basic timetable infor-
mation problem. After introducing the implementation settings, datasets from
Taipei transit system will be used for the implementations. We will compare two
implementation of shortest path algorithms: topological ordering algorithm, and

Dijkstra’s algorithm.

3.4.1. Settings and Problem Sets for the Implementation

All of our computational experiments are conducted using Microsoft Visual Studio
2005 on a Acer Aspire machine with an Intel Core 2 Duo processor at 1866 MHz
and 2039 MB RAM running Microsoft Windows XP SP2.

We test our implementation on problem sets based on the bus datasets obtained
from China Engineering Consultants Incorporation (CECI) and MRT datasets
obtained from Taipei Rapid Transit Corporation (i.e. Taipei Metro). The bus
datasets consists of bus route information and bus stop locations. The MRT
datasets consists of MRT station location. With the locations of bus stops and
MRT stations, we could estimate the distance between stops and stations. Ac-
cording to Institute of Transportation, MOTC [20], the average speed for a bus

in Taipei is 22.88 kilometer per hour, and the average walking speed for a Taipei
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pedestrian is 4 kilometer per hour. With the average travel time between MRT
station provided by Taipei Metro, we could estimate the length (travel time) of
arcs in Taipei transit system.

Because Taipei transit system does not obey fixed time schedules in reality, we
generate timetables for each bus stop or MRT stations. We assume that Taipei
transit system operates from 8 a.m. to 10 p.m.; in other words, the earliest
available time for bus or MRT service is 8 a.m. and the last possible time for a
passenger to board a bus or MRT train is 10 p.m.. The service intervals for each

line route are randomly-generated values between 10 minutes and 30 minutes.

3.4.2. Algorithmic Running Time Comparison

We select 5 problem sets for computational experiments. Problem set P, consists
of 139 line routes and 3392 transit stations. Problem set P, consists of 160 line
routes and 3732 transit stations. Problem set Ps; consists of 187 line routes and
4117 transit stations. Problem sets P4 consists of 202 line routes and 4240 transit
stations. Problem set Ps, the complete network of Taipei transit system, consists
of 336 line routes and 5451 transit stations. The number of nodes for the original
transit network, the number of nodes for the basic timetable-based network, and
the time to construct the basic timetable-based network are summarized in Table
3.5. The time to construct the network increases as the network size increases.
For each problem set, we select 10 groups of OD pairs. In each OD groups,
there are 100 OD pairs with approximately same FEuclidean distance. In addition,
we conduct experiment on 5000 OD pairs with origins and destinations randomly
selected. Each OD pair was checked by Depth-First Search (DFS) to assure feasible
solutions before applying topological ordering algorithm. The unit of time for
performance comparison is central processing unit time (CPU time). CPU time

is the amount of time that a computer program consumes in processing central
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Table 3.5. Time to construct basic timetable-based networks

’ Set ‘ Routes H Nodes/Arcs (original) H Nodes/Arcs(expanded) H Time ‘

Py 139 3392 / 11001 152317 / 1061154 || 22391
Py 160 3732 / 13183 159627 / 1122708 || 25610
Ps 187 4117 / 14892 177180 / 1397623 || 27847
Py 202 4240 / 15854 180333 / 1650558 || 30359
Ps 336 5451 / 25736 232613 / 2033405 | 41908

Table 3.6. Relative performance on five problem sets with randomly
selected OD pairs

| Set | DIJ || TO [[SPD (=pFs+10aD) | ATp | SPB (=BFs+10AB) | ATjp |

( (
Py || 3938 || 2159 || 1057 (=610+447) 51.0% || 1043 (=617+426) 51.7%
Py || 4257 || 2438 || 1150 (=658+492) 52.6% | 1132 (=674+458) 53.6%
P35 || 4405 || 2557 || 1265  (=736+529) 50.5% || 1226 (=743+483) 52.1%
Py || 4352 || 2612 || 1277 (=735+542) 51.1% || 1255 (=755+500) 52.0%
P5 || 5270 || 2963 || 1425 (=812+613) 51.9% | 1383 (=814+568) 53.3%
time unit in CPU click ATp = (TO — SPD)/TO X 100% ATpg = (TO — SPB)/TO X 100%

processing unit (CPU) instructions. The CPU time is often measured in clock

ticks and is thereby used as a point of comparison for CPU usage of a program.

Two shortest path algorithms are implemented for computational experiments.
The first algorithm is Dijkstra’s algorithm with binary heap, denoted as DIJ. The
second algorithm is a topological-ordering-based algorithm, denoted as T'O. The
results for problem set 5, the complete Taipei transit system, are summarized
in Table 3.7 (SPD, DFS, TOAD, SPB, BFS, TOAB, ATp and ATpg will be
discussed in section 3.5). As for the computational performance on 5000 randomly
selected OD pairs, the results are presented in Table 3.6. Results for other problem
sets are shown in Appendix A.

We notice that topological-ordering-based algorithm performs better than Dijk-
stra’s algorithm on basic timetable-based network. The reason why topological-
ordering-based algorithm performs better than Dijkstra’s algorithm is that the
topological ordering algorithm [1] can be modified to solve a shortest path in

O(|E|) time while Dijkstra’s algorithm takes O(|E| 4+ |V]log|V]) time at best
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[11]. Generally, the result could be obtained within seconds in real time for

topological-ordering-based algorithm.

3.5. Speed-up Techniques

We have successfully implemented two algorithms, topological-ordering-based
algorithm and Dijkstra’s algorithm, to solve basic timetable information problem.
The computational efficiency is reasonable on a personal computer (PC). How-
ever, in order to operate on a mobile device, such as cellular phone or PDA, the
performance of our current solution may not be efficient enough due to inferior
CPU or less memory space equipped with mobile device. Facing these limitations,
some speed-up techniques may be necessary.

One proposed speed-up technique is to find a feasible solution through DF'S be-
fore applying shortest path algorithm, denoted as SPD. By finding a feasible, but
not necessarily the shortest, solution, we could set a boundary on our searching.
Since the shortest path should have a cost lower than or equal to any feasible solu-
tion, we could eliminate the nodes that operate later the sum of intended departure
time and the cost of feasible solution obtained through DFS. The complexity is
the same, but the searched network size could be potentially much smaller. How-
ever, based on the nature of the timetable-based network, we can use Breadth-first
Search (BFS) to find a feasible solution slightly more efficiently. Since a passenger
will not transfer from one line route to another more than three times often accord-
ing to our computational results, the feasible solution obtained from BFS could
potentially be closer to the optimal solution than the feasible solution obtained
from DFS. Theoretically, BFS may take longer to find a feasible solution than
DFS but may eliminate more nodes through feasible solution closer to optimal
solution. The size of network is smaller after applying BFS and thus the shortest

path algorithm can find the optimal solution faster. The speed-up technique using
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BFS to find a feasible solution before applying shortest path algorithm is denoted
as SPB.

Another proposed speed-up technique is finding the solution with longest travel
time in the multimodal timetable-based network, denoted as SPL. If the longest
possible travel time is known, we could eliminate the nodes that operate later
than the sum of intended departure time and the longest possible travel time.
By applying these techniques, the complexity remains the same, but the searched
network size could be smaller.

We hereby apply SPD and SPB on our 5 problem sets. Table 3.7 summarizes
the implementation results of 10 groups of OD pairs in problem set 5. Results on
other problem sets are shown in Appendix A. In Table 3.7, DIJ is the compu-
tational time for Dijkstra’s algorithm, T'O is the average computational time for
topological ordering algorithm, DFS is the computational time to conduct DFS
for an feasible solution and then set the boundary accordingly, TOAD is the com-
putational time for topological ordering algorithm after the speed-up technique is
applied, and SPD is the total computational time with speed-up technique, i.e.
the total of DFS and TOAD. BFS is the computational time to conduct BFS for
an feasible solution and then set the boundary accordingly, TOAB is the com-
putational time for topological ordering algorithm after the speed-up technique is
applied, and SPB is the total computational time with speed-up technique, i.e.
the total of BFS and TOAB. In addition, we list AT p, the percentage of time
improvement from plain topological ordering algorithm to topological ordering al-
gorithm with speed up technique using DFS (i.e. AT% = (TO — SPD)/TO x
100%) and AT g, the percentage of time improvement from plain topological or-
dering algorithm to topological ordering algorithm with speed up technique using

BFS (i.e. AT% = (TO — SPB)/TO x 100%) in the table.
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Table 3.7. Relative performance on problem set 5

oD Group | DIJ || TO || SPD
1 4436 | 2635 | 1251 )
4390 [| 2599 [ 1241 )
4552 || 2724 | 1286 ) |52.8% | 1310
4678 | 2882 | 1366 (=777+ss0) | 52.6% | 1336
)
)
)

(=prs+10AD) | ATp | SPB
(
(
(
(
4973 || 3169 || 1480 (=837+643
(
(
(
(
(

52.5% | 1224
52.3% | 1233

(=BFS+TOAB) \ ATg ‘
( ) 53.5%
( ) 52.5%
( ) 51.9%
(=778+558) 53.6%
53.3% | 1458 (=860+598) 54.0%
( )
( )
(
(
(

5314 || 3506 | 1637
5296 || 3486 || 1634
5311 || 3518 || 1643

53.3% | 1602 54.3%
53.1% | 1639 53.0%
=927+716) 53.3% | 1616 (=942+674) 54.1%
5668 || 3862 || 1803 (=1019+784) 53.3% | 1742 (=1022+720) 54.9%
10 6239 || 4430 || 2058 (=1161+897) 53.5% | 2048 (=1192+856) 53.8%
time unit in CPU click ATp = (TO — SPD)/TO X 100% ATpg = (TO — SPB)/TO X 100%

O 00| || O x| W N

Table 3.8. Normalization of relative performance on problem set 5

| 0D Group || DIJ || TO [ SPD  (=DFs +T0AD) | SPB | (=BFS + TOAB) |

1 3.54 || 2.11 || 1.00 (=0.57 +0.43) | 0.98 | (=0.58 + 0.40)
2 3.54 1 2.10 || 1.00 (=0.57 +0.43) | 0.99 | (=0.57 + 0.42)
3 3.54 11 2.12 | 1.00 (=057 +0.43) | 1.02 | (=0.57 + 0.45)
4 3.42 || 2.11 || 1.00  (=0.57 + 0.43) | 0.98 | (=0.57 + 0.41)
) 3.36 || 2.14 || 1.00 (=0.57 + 0.43) | 0.99 | (=0.57 + 0.40)
6 3.25 ] 2.14 || 1.00  (=0.56 + 0.44) | 0.98 | (=0.57 + 0.41)
7 3.24 11 2.13 || 1.00 (=056 + 0.44) | 1.00 | (=0.58 + 0.42)
8 3.23 || 2.14 || 1.00 (=0.56 + 0.44) | 0.98 | (=0.57 + 0.41)
9 3.14 || 2.14 || 1.00  (=0.57 + 0.43) | 0.97 | (=0.57 + 0.40)
10 3.03 || 2.15 || 1.00 (=0.56 + 0.44) | 1.00 | (=0.58 + 0.42)

By applying our first proposed speed-up technique, the average running time
improves approximately 53% on problem set 5. By applying our speed-up tech-
nique using BFS, the average running time improves approximately 55%. We
further normalize the results for each OD group in problem set 5 on the basis of
SPD and summarize in Table 3.8. The ratio between time usage of DFS and that
of TOAD or BFS and that of TOAB remains approximately constant throughout

all problem sets.

3.6. Summary

In this chapter, we solve the basic timetable information problem. In addition

to the line route information of a transit system, our problem takes timetable
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into consideration. In order to incorporate timetable information, a new network,
basic timetable-based network, is constructed through algorithm CBTBN. After
constructing the basic timetable-based network, we then apply algorithm EAB
with implementations of topological ordering algorithm and Dijkstra’s algorithm.

By conducting computational experiments on datasets from Taipei transit net-
work, the results have shown reasonable efficiency on PC. Our computational ex-
periments also support the theoretical projection that topological ordering algo-
rithm should perform better than Dijkstra’s algorithm. Furthermore, we propose
some speed-up techniques to improve computational efficiency. The results of
applying our first proposed speed-up technique, SPD, show a 53% running time
improvement. and the results of applying speed-up technique using BFS, SPB,
show a 54% running time improvement. Although the computational results indi-
cate that SPB has a better efficiency than SPD, the improvement attributes the
nature of Taipei transit system. Whether SPB has better computational efficiency
than SPD or not requires further validation. The actual performance of mobile

device remains unknown.



CHAPTER 4

METHODOLOGIES ON A MULTIMODAL TIMETABLE
INFORMATION PROBLEM WITH WALKING

TRANSFER

We then consider a more complicated timetable problem in which users select
the origin transit station, destination transit station, and intended departure time.
The origin and destination are not limited to transit stations, and walking is
permitted as a means of transportation.

To simplify the multimodal timetable information problem with walking trans-

fer, some assumptions are made:

Assumption 4.1: There is no congestion in the transit system.

Since there is no congestion in the transit system, there should be no delay

during all journeys. Thus we could make the following assumption:

Assumption 4.2: All transit vehicles arrive at or depart from each node

accordingly to the timetables.

To transfer from one transit route to another transit route at the same physical
location, it would take a passenger a certain amount of time to alight and board.

To simplify this situation, we assume that

Assumption 4.3: Waiting time for route transfer at the same physical lo-

cation 1s constant.

Since walking is allowed in this problem, we further assume that

Assumption 4.4: The walking speed remains the same for every traveler.

36
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However, the nature of private road network (for walking) is very different from
that of transit network. In order to prevent details of private road network from

increasing computation complexity, we assume that

Assumption 4.5: The walking distance from one node to another is defined

as the Euclidean distance between those two nodes.

4.1. Spatial Data and Temporal Data

Let digraph G = (N, A) represent a transit network where N denotes the set
of nodes and A denotes the set of arcs. A node in N represents some physical
location where a transit vehicle can stop to pick up passengers, such as bus stop,
port, or train station. Each node in N belongs to at least one line route. A line
route is a set of nodes which transfer is not required to travel between them. For
example, in Figure 4.1, we can take Route 1 to travel from node 1 to node 3 without
transfer. Thus Route 1 is a line route. A directed arc (7, j) € A represents a direct
connection (i.e. non-stop route segment) from node i to node j in a line route.
Suppose there are K line routes in G, and Rj, records the arc sequence in Route
k for k =1,..., K. The number of segments in R}, equals to |Ry|. Take Figure 4.1
for example, there are 6 nodes and 4 arcs, where Route 1 is composed by arc (1, 2)
and (2,3), Route 2 by arcs (4,5) and (5, 6), respectively. Thus Ry = [(1,2), (2, 3)]
and Ry = [(4,5),(5,6)]. These topological connection relations can be stored as

part of spatial data in a table shown as Table 4.2.

Notice that in Figure 4.1, we demonstrate that a transit network with multiple
line routes can be decomposed into multiple layers of network, in which each
layer consists of one line route. In other words, if there are K line routes in
the transit network G, then G can be decomposed into K layers (for the transit

network in Figure 4.1, there are two layers, Ggr; and Gpgs). This decomposition
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Table 4.1. Nomenclature for the multimodal timetable information
problem with walking transfer

set of arcs in transit network GG

set of walking distance in timetable-based network G
set of arcs in timetable-based network 3

set of non-stop arcs in timetable-based network G

X set of route-transfer arcs in timetable-based network G

w set of walk-transfer arcs in timetable-based network G’

transit network; G = (N, A)

QoI AQ®
o

G timetable-based network; G = (V,E)

K the number of line routes in GG

N set of nodes in transit network G

Ry, the arc sequence in Route k in G, k=1,.... K

RFY, the frequency of dispatching transit vehicle in R

RS; set of line route segments that are associated with node ¢, 1 € N
RS! the I'! line route segment in RS;, [ =1, ..., | RS

RS A; set of line route segments that arrive at node 7, 1 € N

RSD; set of line route segments that depart from node 7, i € N

TR; the modification of T'RS; with some consecutive duplicated times removed
TRS, set of times that line route segments in R.S; take place in node i, i € N
TRSé the time that the route segment RS! take place in node i, i € N

TW,; walk time between node ¢ and j, 7,7 € N

Tx; the time to alight a transit vehicle and then board another transit vehicle
V set of | V| groups of nodes in timetable-based network G

Vy a node group composed by a set of |T'Ry| copies of destination node d, d € N
Vi a node group composed by a set of |T'R;| copies of node i, i € N

Vi, a node group composed by a set of |T'R,| copies of origin node 0, 0 € N
Cij the walking distance between node ¢ and j, 7,7 € N

a,b the index of line route in transit network G

d requested destination of user query

1,7 node in transit network G; i,7 € N

k the index of line route in transit network G

[ the ordinal number of line route segment in transit network GG

m the physical location of the origin of a line route segment RS! in RS,

n the physical location of the destination of a line route segment

0 requested origin of user query

r the index of the route that passes node ¢ and j, 7,7 € N

S the walking speed in transit network G

t the arrival or departure time associated with a line route segment

to intended departure time of user query

ts specified acceptable walking range

u,v node in timetable-based network G, u,v € V

Vg origin node in transit network, vy = (d,r, TRSY, Tx4) € V4

Uy destination node in transit network, v, = (0,7 TRS};, Tz,) €V,

Wq pseudo destination constructed in algorithm EAM

W pseudo origin constructed in algorithm EAM

a, 3 the origin/destination of a non-stop arc in timetable-based network G

a, B the origin/destination of a route-transfer arc in timetable-based network G
&, ﬂ the origin/destination of a walk-transfer arc in timetable-based network G
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Figure 4.1. A multimodal transit network and its hierarchical display

Table 4.2. Line route information

] Segment No. Route No. Route Segment \

1 Route 1 : Node 1 — Node 2
: Node 2 — Node 3

Route 2 : Node 4 — Node 5
: Node 5 — Node 6

=~ Wl N

process would create a hierarchical transit network, and thus named Hierarchical
Decomposition Process (HDP).

Another part of spatial data is the walking distance between each node. Based
on Assumption 4.5, the walking distance between two nodes is defined as the
Euclidean distance between them. Therefore, the walking distance between each
node can be denoted as ¢;;, 7, j € N, ¢ # j. These walking distances can be stored
as part of spatial data using a table as shown in Table 4.3. Then by setting the

walking speed, the time consumed for each walk segment can be obtained.

To calculate the quickest path, one further requires the timetable information,

referred as the temporal data. If two line routes with the same arc sequence have
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Table 4.3. Walk distance information

’ Walk No. \ Walk Segment Distance ‘
1| Node1l — Node 2 : C19
2| Node 1 — Node 3 : C13
3| Node 1 — Node 4 C14
4| Nodel — Node 5 : Ci5
5| Node 1 — Node 6 : C16
6 | Node 2 — Node 3 : Co3
7| Node 2 — Node 4 : Coy
8 | Node 2 — Node 5 : Cas
9| Node 2 — Node 6 : Co6

10 | Node 3 — Node 4 : C34
11 | Node 3 — Node 5 : C35
12 | Node 3 — Node 6 : Csg
13 | Node 4 — Node 5 : Cas
14 | Node 4 — Node 6 : Cag
15 | Node 5 — Node 6 : Cs6

different timetables, they should be taken as different line routes. A timetable
consists of data concerning nodes, line routes, and the departure and arrival times
of the transit vehicles. Let RF} denote the frequency of R (i.e. how often a
transit vehicle is dispatched in a line route) and RS; = RSD; U RSA; be all the
line route segments associated with node i, where RSD; and RS A; represent the
sets of line route segments that depart from and arrive at node i, respectively.
For each route segment RS!, | = 1,...,|RS;| associated with node i € N, we
record TRS! as the time that the route segment RS! takes place in node i. Thus
|TRS;| = |RS;| = |RSD;| + |RSA;|. With timetable information embedded,
different arrival and departure times for a node in a line route will create different
line route segments. For example, referring to Table 4.2 and Table 4.4, there are 3
line route segments associated with node 1, which are (m,n,r,t) = [(1, 2, 1, 8:01),
(1,2, 1, 811), (1, 2, 1, 8:21)] where m is the origin of each line route segment, n
is the origin of each line route segment, r is the index of line route, and ¢ is the

departure or arrival associated with the line route segment.

To further simplify the problem, we assume that for any consecutive line

route segments (7,7) and (i,7) on Ry, the arrival of (7)) and departure of (i,7)
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Table 4.4. Timetable information for each route

Route 1 Route 2
Node 1 | Node 2 | Node 3 | Node 4 | Node 5 | Node 6
1| &:01 8:21 8:30 8:00 8:23 8:30
8:11 8:31 8:40 8:15 8:38 8:45
3] 821 8:41 8:50 8:30 8:53 9:00

[\

happens at the same time at node i. As a result, we can remove some con-
secutive duplicated times in the vector T'RS; when node ¢ is an intermediate
node in Ry, and save the modified vector as T'R;. Note that |TRS;| = |TR;| +
Y kmode i is an intermidate node in R, 12F}, since each time when a route passes through
node i, either its arrival or departure time will be doubly counted in |T'RS;|. Fur-
thermore, the departure time of each line route segment is always later than or
equal to the preceding arrival time (except the first one, which has no preceding
arrival time); that is TRS! < TRS! if [ < I. Thus any passenger alight a line

route at some intermediate node will not be able to take any earlier dispatch at

the same node.

4.2. Construction of a Multimodal Timetable-based Network

To calculate the itinerary with the shortest travel time in a transit network,
one requires incorporating the temporal information into the transit network. To
this end, here we propose a preprocessing algorithm to construct a time-space
network called the multimodal timetable-based network, denoted by G = (V, E),
where V' is a set of |N| groups of nodes and £ = ED U EX U EW consists of
the non-stop arcs (E'D, arcs that are in the same line route), route-transfer arcs
(EX, arcs that connect different line routes), and walk-transfer arcs (EW, arcs
that allow travelers to walk from one node to another).

A node group V; C V for each i € N is composed by a set of |TR;| copies of
node ¢ € N, where each copy corresponds to a specific time associated with a line

route segment connecting i. Thus |V| = >_,_\ |[T'R;|. For our convenience, four

tuples, (i,7, TRS!, Tx;), are used to describe each node v € V in the multimodal
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timetable-based transportation network, where ¢ corresponds to a physical location
of node i € N, r represents the index of the route that passes i, TRS! records
the time of the I'" route segment in RS; arriving at or departing from node i
(e.g. 8:15), and T'x; is the time to alight a transit vehicle and then board another
transit vehicle (e.g. 2 minutes) set by the users.

Each non-stop arc («, 3) € ED represents each line route segment in |,y RS;,
and its end nodes correspond to the end nodes of that line route segment at a
specific time. That is, if « € V; and § € V}, then i # j. Furthermore, |ED| =
Y icn | RSi|. The orientation for a non-stop arc follows the sequence of the nodes
appeared in its corresponding line route segment. Thus a non-stop arc is directed
from a node of earlier time to a node of later time, and we set its length to
be the duration of its corresponding line route segment, or in other words, the
difference in time on its end nodes. On the other hand, each route-transfer arc
(&,3) € EX connects two nodes of the same physical location (i.e. if & € V;
and 3 € Vj;, then ¢ = j) but different times, as long as the time difference of end
nodes does not exceed the time for route change. In particular, for each route-
transfer arc (d,B) € EX where & = (i,7, TRS", Tx;) and B = (1,79, TRS2 Tx;)
correspond to some physical location ¢ € N, its orientation directs from u to v
and TRS! +Tx; < TRS? and its length can be set as TRS?> — TRS". Therefore,
the number of route-transfer arcs connecting nodes in V; C V is at most O(|V;[?),
and thus [EX| = O(X,cx [Vil%).

The major difference between the basic timetable-based network introduced
in previous chapter and the multimodal timetable-based network is the addition
of walk-transfer arcs. In the multimodal timetable-based network, travelers are
allowed to walk from one transit station to all other transit stations, and thus there
are walk-transfer arcs between every two nodes with different physical locations.
Take Figure 4.2 for example. There are two bus routes, Bus Route 1 and Bus

Route 2; from station 1 on Bus Route 1, a passenger has the options to walk
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»  walk-transfer arc

Figure 4.2. An illustration of walk-transfer arc

from station 1 to station 2, 3, 4, and 5, which are within the specified walking
range. So each walk-transfer arc (&, 3) € EW connects two nodes of different
physical locations (i.e. if & € V; and B € V;, then i # j.) and different times
where the time difference of end node does not exceed the time required to walk
between end nodes, and the length between each node does not exceed the specified
walking range ¢,. In particular, for each walk-transfer arc (&, ) € EW where & =
(i,r1, TRS! Ta;) and B = (i,7s, TRS;b, Tz;) correspond to physical locations i
and j, where 7,7 € N and 7 # j , and route number a and b, where a,b € K, the
distance between locations ¢ and j can be denoted as ¢;;, the speed of walking can
be denoted as s (defined as a constant value according to assumption 4.4), the

_ el

travel time between ¢ and j by foot can be denoted as T'W;; where TW,; = o

and its orientation directs from v to v and T’ RSf“ +TW;; < TRSJl-”.
Now we give steps of our preprocessing algorithm CMTBN (Constructing the

Multimodal Timetable-based Network) as follows:



44

Step 1: Read the spatial data (e.g. Table 4.2 and Table 4.3) and temporal
data (e.g. Table 4.4), store data in N, A,C, RS, RSD, RSA,TRS, TR.

Step 2: Set acceptable walking range ;.

Step 3: For each node i € V, we store each node the defined four tuples
(i,r, TRS!, Tz;).

Step 4: Construct each non-stop arc («, ) € ED, using V and RS.

A

Step 5: Construct each direct-transfer arc (&, §) € EX, using V.

Step 6: Construct each walk-transfer arc (&, 3) € EW, using V, C, and

RS.

4.3. Query and Solution Method on a Multimodal Timetable-based

Network

In this section, we design an algorithm to solve the earliest arrival problem
on the multimodal timetable-based network, and then demonstrate this procedure
with the transit network shown in Figure 4.1. Since the timetable-based network
is acyclic, we can apply topological-ordering-based algorithms to solve the shortest

path problem.

4.3.1. Procedures

Depending on the locations of the requested origin o and destination d, as well as
the starting time ¢, of the query, we would like to identify a feasible itinerary of
the minimum travel time from o to d in G. Here we give an algorithm called EAM
(stands for Early Arrival for Multimodal timetable-based network) with steps as

follows:

Step 1: Read the multimodal timetable-based network G, as well as all the
related data structures.
Step 2: Read the indices of the requested origin o and destination d, and

the starting time t,.



45

Step 3: For each (u,v) € E, where u = (i,7, TRS!, Tx;) with TRS! < t,,
remove it from E.

Step 4: Remove those route-transfer arcs whose both end nodes are in V,
or V.

Step 5: Construct a pseudo origin w,, a pseudo destination wy, artificial
arcs (w,,v,) for each node v, = (0,7, TRS!, Tx,) € V, with nonnegative
length equal to (TRS! —t,), where (TRS! —t,) > “2t= and artificial
arcs (vg, wg) with nonnegative length equals to c”d% for each node vy =
(d,7, TRS,, Tx4) € Vy with TRSY > t,.

Step 6: Solve a shortest path from w, to w, in G using any shortest path
algorithm.

Step 7: Output the calculated shortest path, which corresponds to the

quickest itinerary as requested.

In particular, based on the multimodal timetable-based network G, Step 3
first eliminates arcs that are too early for the user; Step 4 removes those route-
transfer arcs inside the node groups corresponding to o and d since one can only
changes line routes at intermediate nodes but not the origin and destination;
Step 5 connects the pseudo origin and pseudo destination to their corresponding
nodes that serve as the start and end of the request itinerary. Through these
five steps, algorithm EAM has already incorporated the query information into
the modified multimodal timetable-based network. Since the length of each arc in
the modified multimodal timetable-based network represents either the duration
of a route segment (for a non-stop arc), the waiting time to transfer routes (for a
direct-transfer arc), the walking time to transfer routes (for a walk-transfer arc),
or the waiting time and walking time to start the itinerary (for an artificial arc
connecting to nodes in V,), a shortest path in the modified multimodal timetable-
based network thus corresponds to an itinerary with the minimal travel time from

o to d starting from time ¢,.
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Figure 4.3. A multimodal timetable-based transit network

Since the artificial arcs added to G also direct from nodes of earlier time to
nodes of later time, the modified multimodal timetable-based network remains
acyclic, same as the basic timetable-based network. For seeking a shortest path in
an acyclic diagram of |V| nodes and |E| arcs, the topological ordering algorithm
[1] can be modified to solve a shortest path in O(|E|) time, which is theoretically
the most efficient since any shortest path algorithm takes at least (| E|) time to

read the input network.

4.3.2. An Illustrative Example

To demonstrate the formulation of our multimodal timetable-based transportation
network, consider a transit network consisted of two transit routes and six nodes
as shown in Figure 4.1 and Table 4.2. Table 4.3 gives the walking time between

each node, and Table 4.4 gives the timetable of this transit system.
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Table 4.5. Walking time for artificial arcs

] Segment \ Time (mins) H Segment \ Time (mins) H Segment \ Time (mins) \

o— Vi 2 o— Vs 121 o— Vs 71
o—Vy 61 o—Vy 11 o— Vs 131
Vi —d 131 Vs —d 51 Vi —d 61
Vo —d 71 Vi—d 121 Ve — d 2

Table 4.6. Nodes information of multimodal timetable-based network

Sy (1, 1,801, 2) [ S; [(3,1,830,2) [ Si3] (5, 2, 8:23, 2)
Sy [ (1, 1, 811, 2) [ Ss | (3, 1, 8:40, 2) | S1a | (5, 2, 8:38, 2)
Sy [ (1, 1,821, 2) [ S | (3,1, 850, 2) | Si5 | (5, 2, 8:53, 2)
Sy (2, 1,821, 2) || Sio | (4, 2, 8:00, 2) | Si6 | (6, 2, 8:30, 2)
S5 (2,1, 831, 2) | 511 | (4, 2, 815, 2) | Si7 | (6, 2, 8:45, 2)
Se | (2,1, 841, 2) [ 512 | (4, 2, 8:30, 2) | S1s | (6, 2, 9:00, 2)

In this example, if a transfer is needed at any node, a two-minute waiting time
is required. In other words, T'x; = 2 for each node i € N. Suppose a passenger
plans to travel from location A to location B with a planned departure time of
8:00. Then, our algorithm EAM eliminates unqualified arcs from the multimodal
timetable-based network that has been stored in the memory, adds pseudo nodes
and artificial arcs to construct a modified multimodal timetable-based network as
shown in Figure 4.3. The cost (time consumed) between pseudo node and transit
stations are shown in Table 4.5. Table 4.6 demonstrates the information stored in
each node. The algorithm then solves a shortest path from the pseudo origin to
the pseudo destination. In this case, the itinerary with the minimum travel time
will start from origin o on time 8:00, walk for 11 minutes before reaching station
4, wait for 4 minutes at the station, take the bus of route 2 on 8:15, get off the
bus at node 6 on 8:45, walk for another 2 minutes, and then arrive at destination

on 8:47. The total travel time is 47 minutes.

4.4. Computational Experiments

This section summarizes our computational results of multimodal timetable

information problem with walking transfer. After introducing the implementation
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settings, datasets from Taipei transit system will be used for the implementations.
We will compare two implementation of shortest path algorithms: topological

ordering algorithm, and Dijkstra’s algorithm.

4.4.1. Settings and Problem Sets for the Implementation

All of our computational experiments are conducted using Microsoft Visual Studio
2005 on a Acer Aspire machine with an Intel Core 2 Duo processor at 1866 MHz
and 2039 MB RAM running Microsoft Windows XP SP3.

We test our implementation on problem sets based on the bus datasets obtained
from China Engineering Consultants Incorporation (CECI) and MRT datasets
obtained from Taipei Rapid Transit Corporation (i.e. Taipei Metro). The bus
datasets consists of bus route information and bus stop locations. The MRT
datasets consists of MRT station location. With the locations of bus stops and
MRT stations, we could estimate the distance between stops and stations. Ac-
cording to Institute of Transportation, MOTC [20], the average speed for a bus
in Taipei is 22.88 kilometer per hour, and the average walking speed for a Taipei
pedestrian is 4 kilometer per hour. With the average travel time between MRT
station provided by Taipei Metro, we could estimate the length (travel time) of
arcs in Taipei transit system.

Because Taipei transit system does not obey fixed time schedules in reality,
we generate timetables for each bus stop or MRT station. We assume that Taipei
transit system operates from 8 a.m. to 10 p.m.; in other words, the earliest
available time for bus or MRT service is 8 a.m. and the last possible time for a
passenger to board a bus or MRT train is 10 p.m.. The service intervals for each

line route are randomly-generated values between 10 minutes and 30 minutes.
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Table 4.7. Time to construct multimodal timetable-based network

’ Set ‘ Routes H Nodes/Arcs (original) H Nodes/Arcs (expanded) H Time ‘

Py 139 3392 / 11001 152317 / 3085427 73653
Py 160 3732 / 13183 159627 / 3820659 93015
P; 187 4117 / 14892 177180 / 4511358 101298
Py 202 4240 / 15854 180333 / 5096710 110960
Ps 336 5451 / 25736 232613 / 6551773 138359

4.4.2. Algorithmic Running Time Comparison

We select 5 problem sets for computational experiments. Problem set P, consists
of 139 line routes and 3392 transit stations. Problem set P, consists of 160 line
routes and 3732 transit stations. Problem set P3 consists of 187 line routes and
4117 transit stations. Problem sets P, consists of 202 line routes and 4240 transit
stations. Problem set Ps, the complete network of Taipei transit system, consists
of 336 line routes and 5451 transit stations. The number of nodes for the original
transit network, the number of nodes for the basic timetable-based network, and
the time to construct the basic timetable-based network are summarized in Table
4.7. The time to construct the network increases as the network size increases.
For each problem set, we select 10 groups of OD pairs. In each OD groups,
there are 100 OD pairs with approximately same Euclidean distance. In addition,
we conduct experiments on 5000 OD pairs with origins and destinations randomly
selected. Each OD pair was checked by Depth-First Search (DFS) to assure feasible
solutions before applying topological ordering algorithm. The unit of time for
performance comparison is central processing unit time (CPU time). CPU time
is the amount of time that a computer program consumes in processing central
processing unit (CPU) instructions. The CPU time is often measured in clock

ticks and is thereby used as a point of comparison for CPU usage of a program.

Two shortest path algorithms are implemented for computational experiments.
The first algorithm is Dijkstra’s algorithm with binary heap, denoted as DIJ. The

second algorithm is a topological-ordering-based algorithm, denoted as T'O. The
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Table 4.8. Relative performance on five problem sets with randomly
selected OD pairs

|Set | DIJ || TO [ SPD (=prs+10AD) | ATp | SPB (=BFs+10AB) | ATjp |

( (
Py || 10569 || 7503 || 3495 (=1976+1519) 53.4% || 3393  (=1993+1400) 54.7%
Py || 10928 || 7750 || 3592 (=2026+1566) 53.6% || 3598 (=2051+1547) 53.6%
P53 || 11169 || 8082 || 3750 (=2116+1634) 53.6% | 3749 (=2153+1596) 53.6%
Py || 11321 || 8294 || 3748 (=2084+1664) | 54.8% || 3636 (=2113+1523) 56.1%
Ps || 11973 || 8960 || 4096 (=2281+1815) 54.3% || 4007 (=2301+1706) 55.3%
time unit in CPU click ATp = (TO — SPD)/TO X 100% ATpg = (TO — SPB)/TO X 100%

results for problem set 5, the complete Taipei transit system, are summarized
in Table 4.9 (SPD, DFS, TOAD, SPB, BFS, TOAB, ATp and ATp will be
discussed in section 4.5). As for the computational performance on 5000 randomly
selected OD pairs, the results are presented in Table 4.8. Results for other problem
sets are shown in Appendix B.

We notice that topological-ordering-based algorithm performs better than Dijk-
stra’s algorithm on basic timetable-based network. The reason why topological-
ordering-based algorithm performs better than Dijkstra’s algorithm is that the
topological ordering algorithm [1] can be modified to solve a shortest path in
O(|E|) time while Dijkstra’s algorithm takes O(|E| 4+ |V |log|V]) time at best
[11]. Generally, the result could be obtained within seconds in real time for

topological-ordering-based algorithm.

4.5. Speed-up Techniques

We have successfully implemented two algorithms, topological-ordering-based
algorithm and Dijkstra’s algorithm, to solve multimodal timetable information
problem. However, in order to operate on a mobile device, such as cellular phone
or PDA, the performance of our current solution may not be efficient enough due
to inferior CPU or less memory space equipped with mobile device. Facing these
limitations, some speed-up techniques may be necessary.

One proposed speed-up technique is to find a feasible solution through DFS be-

fore applying shortest path algorithm, denoted as SPD. By finding a feasible, but
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not necessarily the shortest, solution, we could set a boundary on our searching.
Since the shortest path should have a cost lower than or equal to any feasible solu-
tion, we could eliminate the nodes that operate later the sum of intended departure
time and the cost of feasible solution obtained through DFS. The complexity is
the same, but the searched network size could be potentially much smaller. How-
ever, based on the nature of the timetable-based network, we can use Breadth-first
Search (BFS) to find a feasible solution slightly more efficiently. Since a passenger
will not transfer from one line route to another more than three times often accord-
ing to our computational results, the feasible solution obtained from BF'S could
potentially be closer to the optimal solution than the feasible solution obtained
from DFS. Theoretically, BF'S may take longer to find a feasible solution than
DFS but may eliminate more nodes through feasible solution closer to optimal
solution. The size of network is smaller after applying BFS and thus the shortest
path algorithm can find the optimal solution faster. The speed-up technique using
BF'S to find a feasible solution before applying shortest path algorithm is denoted
as SPB.

Another proposed speed-up technique is finding the solution with longest travel
time in the multimodal timetable-based network, denoted as SPL. If the longest
possible travel time is known, we could eliminate the nodes that operate later
than the sum of intended departure time and the longest possible travel time.
The complexity is the same, but the searched network size could be smaller.

We hereby apply SPD and SPB on our 5 problem sets. Table 4.9 summarizes
the implementation results of 10 groups of OD pairs in problem set 5. Results on
other problem sets are shown in Appendix B. In Table 4.9, DIJ is the compu-
tational time for Dijkstra’s algorithm, T'O is the average computational time for
topological ordering algorithm, DFS is the computational time to conduct DFS
for an feasible solution and then set the boundary accordingly, TOAD is the com-

putational time for topological ordering algorithm after the speed-up technique is
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Table 4.9. Relative performance on problem set 5

oD Group | DIJ [| TO [ SPD (=prs+10AD) | ATp | SPB  (=Brs+10AB) | ATp |

( (
1 10126 || 7032 || 3223 (=1804+1419) 54.2% || 3216 (=1839+1377) | 54.3%
2 10478 || 7377 || 3387 (=1899+1488) 54.1% || 3342 (=1903+1439) | 54.7%
3 10748 || 7647 || 3499 (=1957+1542) 54.2% || 3519 (=1991+1528) | 54.0%
4 10994 || 7899 || 3614 (=2022+1593) 54.2% || 3556 (=2045+1511) | 55.0%
) 11345 || 8244 || 3775 (=2113+1661) 54.2% || 3767 (=2123+1664) | 54.3%
6 11773 || 8672 || 3966 (=2219+1747) 54.3% || 3955 (=2246+1710) | 54.4%
7 11850 || 8758 || 4001 (=2238+1764) 54.3% || 3934 (=2264+1670) | 55.1%
8 12235 || 9135 || 4169 (=2330+1840) 54.4% | 4058 (=2336+1723) | 55.6%
9 12562 || 9465 || 4327 (=2421+1906) 54.3% || 4381 (=2476+1905) | 53.7%
10 12908 || 9807 || 4474 (=2500+1974) 54.4% || 4430 (=2540+1890) 54.8%
time unit in CPU click ATp = (TO — SPD)/TO X 100% ATpg = (TO — SPB)/TO X 100%

applied, and SPD is the total computational time with speed-up technique, i.e.
the total of DFS and TOAD. BFS is the computational time to conduct BFS for
an feasible solution and then set the boundary accordingly, TOAB is the com-
putational time for topological ordering algorithm after the speed-up technique is
applied, and SPB is the total computational time with speed-up technique, i.e.
the total of BFS and TOAB. In addition, we list AT p, the percentage of time
improvement from plain topological ordering algorithm to topological ordering al-
gorithm with speed up technique using DFS (i.e. AT% = (TO — SPD)/TO x
100%) and AT g, the percentage of time improvement from plain topological or-
dering algorithm to topological ordering algorithm with speed up technique using

BES (i.e. AT% = (TO — SPB)/TO x 100%) in the table.

By applying our first proposed speed-up technique using DFS, the average
running time improves approximately 53% on problem set 5. By applying our
speed-up technique using BF'S, the average running time improves approximately
55%. We further normalize the results for each OD group in problem set 5 on the
basis of SPD and summarize in Table 4.10. The ratio between time usage of DFS

and that of TOAD remains approximately constant throughout all problem sets.
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Table 4.10. Normalization of relative performance on problem set 5

| 0D Group || DIJ || TO [ SPD  (=DFs +T0AD) | SPB | (=BFS + TOAB) |

1 3.14 || 2.18 || 1.00  (=0.56 + 0.44) | 1.00 | (=0.57 + 0.43)
2 3.09 || 2.18 || 1.00 (=0.56 + 0.44) | 0.99 | (=0.56 + 0.42)
3 3.07 1 2.19 || 1.00 (=0.56 + 0.44) | 1.01 | (=0.57 + 0.44)
4 3.04 1 2.19 || 1.00 (=056 + 0.44) | 0.98 | (=0.57 + 0.42)
) 3.01 1] 2.18 || 1.00 (=0.56 + 0.44) | 1.00 | (=0.56 + 0.44)
6 2.97 11 2.19 || 1.00  (=0.56 + 0.44) | 1.00 | (=0.57 + 0.43)
7 296 || 2.19 | 1.00 (=0.56 + 0.44) | 0.98 | (=0.57 + 0.42)
8 2931 2.19 || 1.00 (=0.56 + 0.44) | 0.97 | (=0.56 + 0.41)
9 290 2.19 || 1.00 (=056 + 0.44) | 1.01 | (=0.57 + 0.44)
10 2.89 1 2.19 | 1.00 (=056 + 0.44) | 0.99 | (=0.57 + 0.42)

4.6. Summary

In this chapter, we solve the multimodal timetable information problem with
walking transfer. In addition to the line route information of a transit system, our
problem takes timetable and walking transfer into consideration. In order to in-
corporate timetable information and walking transfer, a new network, multimodal
timetable-based network, is constructed through algorithm CMTBN. After con-
structing the multimodal timetable-based network, we then apply algorithm EAM
with implementations of topological ordering algorithm and Dijkstra’s algorithm.
For each problem set, the number of arcs of its timetable-based network is much
greater with walking transfer as a transportation means.

By conducting computational experiments on datasets from Taipei transit net-
work, the results have shown reasonable efficiency on PC. Our computational
experiments also support the theoretical projection that topological ordering al-
gorithm should perform better than Dijkstra’s algorithm. Furthermore, we pro-
pose two speed-up techniques to improve computational efficiency. The results of
applying our first proposed speed-up technique, SPD, show a 53% running time
improvement. and the results of applying speed-up technique using BFS, SPB,
show a 55% running time improvement. Although the computational results indi-
cate that SPB has a better efficiency than SPD, the improvement attributes the

nature of Taipei transit system. Whether SPB has better computational efficiency
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than SPD or not requires further validation. Compared with basic timetable in-
formation problem, it takes more time to solve multimodal timetable information
problem with walking transfer. However, the actual performance of mobile device

remains unknown.



CHAPTER 5

METHODOLOGIES ON FARE INFORMATION

PROBLEMS

The nature of fare is very different from travel time, especially when its struc-
ture is non-linear. In order to find the cheapest route in a transit network, we
need to construct a modified transit network with fare information embedded be-
fore applying shortest path algorithms. In order to simplify the problem, we need

to make some assumptions:

Assumption 5.1: In the transit network, the length (cost) between any two
nodes is known and fixed.
Assumption 5.2: The length (cost) is exclusively defined as the travel fare

m appropriate monetary units.

Since walking is a costless transportation option, a trip planning system would
generate itineraries composed of all walking with respect to lowest travel fare if
walking is a transportation alternative. Therefore, we make a further assumption

to avoid this scenario:

Assumption 5.3: Walking is restricted to traversals between origin and
transit stations and those between transit stations and destination with-
out exceeding a certain range limitation. Traversing by foot is not a
transportation means between transit stations in finding an optimal trip

wtinerary with lowest travel fare.

95
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Table 5.1. Nomenclature for fare information problem

set of arcs in transit network G
set of arcs in fare-based network GG

!

set of non-stop arcs in fare-based network G

set of route-transfer arcs in fare-based network G
transit network; G = (N, A)
fare-based network; G = (V| E)

the number of line routes in G
set of nodes in transit network G

DR R eI
S

set of | V| groups of nodes in fare-based network G

a node group composed by a set of copies of node i, 1 € N

a node group composed by a set of copies of node [, [ € N

a node group composed by a set of copies of node n, n € N
the travel cost between node 7 and node j, 7,7 € N and i # j
a node in transit network G; i € N

J a node in transit network G; j € N

k the index of line route in transit network G
n

SIS ExQ

- O
S0
S

number of nodes
Vg origin node in transit network, vy = (d, 7, m) € V,
Uy destination node in transit network, v, = (0, r m’) ev,
Wq pseudo destination constructed in algorithm LTF
W, pseudo origin constructed in algorithm LTF

the origin of a non-stop arc in fare-based network G

S

the origin of a route-transfer arc in fare-based network G
the destination of a non-stop arc in fare-based network GG

D

the destination of a route-transfer arc in fare-based network é

5.1. Spatial Data and Fare Data

Let digraph G = (N, A) represent the transit network where N denotes the
set of nodes and A denotes the set of arcs. A node in N represents some physical
location where a transit vehicle can stop to pick up passengers, such as a bus stop,
port, or train station. Each node in N belongs to at least one line route. A line
route is a set of nodes which transfer is not required to travel between them.

A directed arc (i,j) € A represents a direct connection from node i to node j
in a line route. Suppose that there are K line routes. Each transit line route & for
k =1,..., K can be presented as an individual layer through HDP (see Figure 5.1,

a transit network with MRT and Bus Route can be decomposed into two layers).
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Figure 5.1. A hierarchical representation of a multimodal transit network

Take the multimodal transit network in Figure 5.2 for example, there are 6
physical locations and 2 transit line routes in different transit modes. The de-
composed network is shown in Figure 5.1. For MRT (denoted as line route 1),
it is composed by in-route arcs, Aypr = {(4,7) | 4,7 = 1,2,3,4,5 and ¢ # j},
which make it a complete graph. For Bus Route (denoted as line route 2), it is
composed by in-route arcs, Agys = {(4,j) | i,7 = 6,7,8 and ¢ # j}, which make it
a complete graph. These topological connection relations can be stored as spatial
data. In comparison with a timetable-based network, we note that parallel arcs
basically do not exist in each individual layer of a fare-based network. Since each
transit route resides in its own layer, it is unlikely to have more than one route
between two stops in each individual layer.

To calculate the cheapest path, one further requires the fare information
referred as the fare data. The fare data consists of information concerning nodes,

routes, and fare between nodes. Table 5.2 lists the fare data for the transit network



Figure 5.2. A multimodal transit network

Table 5.2. Fare data

o8

Route No. Route Segment Fare Route No. Route Segment Fare
Route 1 Node 1 — Node 2 C19 Route 1 Node 2 — Node 1 Ca1
Route 1 Node 1 — Node 3 C13 Route 1 Node 2 — Node 3 C99
Route 1 Node 1 — Node 4 C14 Route 1 Node 2 — Node 4 Cos
Route 1 Node 1 — Node 5 C15 Route 1 Node 2 — Node 5 Cos

Route No. Route Segment Fare Route No. Route Segment Fare
Route 1 Node 3 — Node 1 C31 Route 1 Node 4 — Node 1 Ca1
Route 1 Node 3 — Node 2 C39 Route 1 Node 4 — Node 2 C49
Route 1 Node 3 — Node 4 C34 Route 1 Node 4 — Node 3 C43
Route 1 Node 3 — Node 5 C35 Route 1 Node 4 — Node 5 Cy5

Route No. Route Segment Fare Route No. Route Segment Fare
Route 1 Node 5 — Node 1 Cs1 Route 2 Node 6 — Node 7 Ce7
Route 1 Node 5 — Node 2 C59 Route 2 Node 6 — Node 8 Cg8
Route 1 Node 5 — Node 3 Cs3 Route 2 Node 7 — Node 6 Cr6
Route 1 Node 5 — Node 4 Cs4 Route 2 Node 7 — Node 8 crs

Route 2 Node 8 — Node 6 Cs6
Route 2 Node 8 — Node 7 Cg7

in Figure 5.1. From assumption 2, the travel cost ¢;; between node 7 and node j,

1,7 € N and 7 # j, are all known and fixed.

5.2. Construction of a Fare-based Network

To calculate the itinerary with the lowest travel cost in a transit network, one

requires incorporating the fare information into the transit network. To this end,

here we propose a preprocessing algorithm to construct a hierarchical network

called the fare-based network, denoted by G = (V, E), where V is a set of |N]|

groups of nodes and £ = ED U EX consists of the non-stop arcs (ED, arcs that
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are in the same line route) and route-transfer arcs (EX, arcs that connect different
line routes).

A node group V; C V, for each i € N is composed by a set of copies of node
1 € N, where each copy corresponds to the same physical location of node 7. For
our convenience, three tuples, denoted by (7,7, m), are used to describe each node
v € V in the fare-based transportation network, where i corresponds to a physical
location of node i € N, r represents the index of the route that passes 7, and m
indicates the transit mode.

For each in-route arc (o, 8) € ED, a € V; and 8 € V,, where | # n. While an
in-route arc is directed from a node to another within a transit route, transfer arc
(&, B) € FX connects two nodes of the same physical location but on different
transit routes. That is, if @ € V; and B € V,, then [ = n.

Now we give steps of our preprocessing algorithm CTFBN (Constructing the

Fare-Based Network) as follows:

Step 1: Read the spatial data and fare data.
Step 2: For each node i € V', we store each node the defined tuples (i, 7, m).
Step 3: Construct each in-route arc (o, 5) € ED.

A

Step 4: Construct each transfer arc (&, 5) € EX.

5.3. Query and Solution Method on Fare-based Networks

In this section, we design an algorithm to solve the lowest fare problem on the
fare-based network, and then demonstrate this procedure with the simple transit
network shown in Figure 5.1. In contrast with timetable-based network, the fare-
based network is not acyclic, thus we will apply variants of Dijkstra’s algorithms

to solve the shortest path problem.
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5.3.1. Procedures

Depending on the locations of the requested origin o and destination d of the
query, we would like to identify a feasible itinerary of the minimum travel fare
from o to d in G. Here we give an algorithm called LTF (stands for Lowest Travel

Fare) with steps as follows:

Step 1: Read the fare-based network G, as well as all the related data
structures.

Step 2: Read the indices of the requested origin o and destination d.

Step 3: Construct a pseudo origin w,, a pseudo destination w,, artificial
arcs (w,,v,) for each node v, = (0,7, m) € V, and artificial arcs (vg, wq)
for each node vgy = (d,7,m) € V.

Step 4: Remove the artificial arcs whose lengths (costs) exceed the user-
specified value.

Step 5: Solve a shortest path from w, to wy in G using any shortest path
algorithm.

Step 6: Output the calculated shortest path, which corresponds to the

cheapest itinerary as requested

5.3.2. An Illustrative Example

In order to demonstrate the formulation of our fare-based transportation network,
consider a transit network made up of two transit routes and eight nodes as shown
in Figure 5.1. Table 5.2 gives the fare data of this transit system.

In this example, a transfer can only occur at transit stations with same physical
locations. In other words, transfer can only occur between node 3 and node 7
in this example. Suppose that node 4 and node 6 are within the user-specified
range from origin, and node 2 and node 8 are within the user-specified range from
destination. Our algorithm LTF reads in the fare-based transit network and adds

pseudo nodes and artificial arcs to construct a modified fare-based transit network
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Figure 5.3. A fare-based multimodal transit network

Table 5.3. Node information of illustrative example

Nl (17 17 1) N5 (57 ]-7 1)
N2 (27 17 1) NG (67 27 2)
N; | (3,1, 1) [N/ | (7, 2 2)
N4 (47 1a 1) NS (87 27 2)

as shown in Figure 5.3, and solve a shortest path from the pseudo origin to the
pseudo destination. In this case, the itinerary with the lowest travel fare will be
starting from node 6, taking the bus route, and arriving at node 8. The total cost
is $3. Table 5.3 demonstrates the information stored in each node. Table 5.4 lists

the fare data for this transit network.

5.4. Computational Experiments

This section summarizes our computational results of fare information problem.

After introducing the implementation settings, datasets from Taipei transit system



Table 5.4. Fare data of illustrative example

in-route arcs of MRT
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Route No. Route Segment Fare Route No. Route Segment Fare
Route 1 Node 1 — Node 2 10 Route 1 Node 3 — Node 4 5
Route 1 Node 1 — Node 3 5 Route 1 Node 3 — Node 5 5
Route 1 Node 1 — Node 4 10 Route 1 Node 4 — Node 1 10
Route 1 Node 1 — Node 5 10 Route 1 Node 4 — Node 2 10
Route 1 Node 2 — Node 1 10 Route 1 Node 4 — Node 3 5
Route 1 Node 2 — Node 3 5 Route 1 Node 4 — Node 5 10
Route 1 Node 2 — Node 4 10 Route 1 Node 5 — Node 1 10
Route 1 Node 2 — Node 5 10 Route 1 Node 5 — Node 2 10
Route 1 Node 3 — Node 1 5 Route 1 Node 5 — Node 3 5
Route 1 Node 3 — Node 2 5 Route 1 Node 5 — Node 4 10
in-route arcs of Bus Route
Route No. Route Segment Fare Route No. Route Segment Fare
Route 2 Node 6 — Node 7 3 Route 2 Node 7 — Node 8 3
Route 2 Node 6 — Node 8 3 Route 2 Node 8 — Node 6 3
Route 2 Node 7 — Node 6 3 Route 2 Node 8 — Node 7 3
transfer arcs from MRT to bus

Route Segment Fare

Node 3 — Node 7 0
transfer arcs from bus to MRT

Route Segment Fare

Node 7 — Node 3 0
artificial arcs from pseudo origin to nodes

Route Segment Fare Route Segment Fare

0 — Node 4 0 0o — Node 6 0
artificial arcs from nodes to pseudo destination

Route Segment Fare Route Segment Fare

Node 2 — d 0 Node 8 — d 0

will be used for the implementations. We will conduct our optimization process

with Dijkstra’s algorithm.

5.4.1. Settings and Problem Sets for the Implementation

All of our computational experiments are conducted using Microsoft Visual Studio

2005 on a Acer Aspire machine with an Intel Core 2 Duo processor at 1866 MHz

and 2039 MB RAM running Microsoft Windows XP SP2.
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We test our implementation on problem sets based on the bus datasets obtained
from China Engineering Consultants Incorporation (CECI) and MRT datasets
obtained from Taipei Rapid Transit Corporation (i.e. Taipei Metro). The bus
datasets consists of bus route information and bus stop locations. The MRT
datasets consists of MRT station location and the travel fare between each MRT
station. Since the bus datasets do not include fare information, we assume that
the travel fare between every bus stop on the same line route is a fixed number;

in our case, for any journey on the same line route, the travel fare is set at $15.

5.4.2. Algorithmic Running Time Comparison

We select 5 problem sets for computational experiments. Problem set P; consists
of 139 line routes, 3392 transit stations, and 11001 arcs. Problem set P, consists
of 160 line routes, 3732 transit stations, and 13183 arcs. Problem set P3 consists
of 187 line routes, 4117 transit stations, and 14892 arcs. Problem sets P, consists
of 202 line routes, 4240 transit stations, and 15854 arcs. Problem set Pj, the
complete network of Taipei transit system, consists of 336 line routes, 5451 transit
stations, and 25736 arcs. The number of arcs for the original transit network, the
number of arcs for the fare-based network, and the time to construct the fare-
based network are summarized in Table 5.5. The time to construct the network
increases as the network size increases.

For each problem set, we select 10 groups of OD pairs. In each OD groups,
there are 100 OD pairs with approximately same Fuclidean distance. In addition,
we conduct experiment on 5000 OD pairs with origins and destinations randomly
selected. Each OD pair was checked by Depth-First Search (DFS) to assure feasible
solutions before applying topological ordering algorithm. The unit of time for
performance comparison is central processing unit time (CPU time). CPU time

is the amount of time that a computer program consumes in processing central
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Table 5.5. Time to construct fare-based network

’ Set ‘ Routes H Nodes/Arcs (original) H Nodes/Arcs (expanded) H Time (in CPU time)

Py 139 3392 / 11001 3392 / 472772 14432
Py 160 3732 / 13183 3732 / 603696 19792
Ps 187 4117 / 14892 4117 / 659275 20807
Py 202 4240 / 15854 4240 / 695337 21729
Ps 336 5451 / 25736 5451 / 1002431 36274

Table 5.6. Average running time on problem set 5 for different OD group

’ Problem Set \ OD Group H DIJF ‘

Ps 1 7098
Py 2 7306
Ps 3 7624
Ps 4 7797
Ps ) 7977
Ps 6 8218
P, 7 8511
Ps 8 8619
Ps 9 8773
Ps 10 9033
time unit in CPU click

processing unit (CPU) instructions. The CPU time is often measured in clock

ticks and is thereby used as a point of comparison for CPU usage of a program.

Dijkstra’s algorithm with binary heap, denoted as DIJF, is implemented for
computational experiments. A binary heap data structure requires O(logn) time
to perform insert, decrease-key and delete-min, and it requires O(1) time for the
other heap operations. Consequently, the binary heap version of Dijkstra’s algo-
rithm runs in O(mlogn) time. The results for problem set 5, the complete Taipei
transit system, are summarized in Table 5.6. As for the computational perfor-
mance on 5000 randomly selected OD pairs, the results are presented in Table
5.7. Results for other problem sets are shown in Appendix C. We notice that the

running time increases as the network size increases.
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Table 5.7. Average running time on five problem set for randomly
selected OD group

| Problem Set | DIJF |

P, 4796
P, 5009
Ps 5108
Py 5252
Ps 7589
time unit in CPU click

5.5. Alternative Fare Models

In section 5.2, we propose a fare-based network to solve all fare problems. In
this general fare-based network, arcs are created so that nodes within a line route
are strongly connected. However, enumerating all possible costs between each
node is not the most efficient technique to find cheapest route in Taipei transit
system. For Taipei transit system, we develop an alternative fare model to cope
with two different situations and thereby reduce the number of arcs and reassign

arc costs to improve computational efficiency.

5.5.1. Fixed Fare Rate and Variable Fare Rate

In Taipei transit system, there are two major categories of fare rates. The first
major category is fixed fare rate. Buses in Taipei transit system charge passengers
a fixed fare rate. According to Department of Transportation of Taipei City
Government, the fare for single leg journey is $15 for general public, $12 for
students, $8 for the disabled and children. The second major category is variable
fare rate. MRT in Taipei transit system charges passengers a variable fare rate.
For example, if a MRT passenger decides to travel from Taipei Main Station of
Danshui Line to Taipei City Hall of Nangang Line, it will cost him $20, but if
a MRT passenger decides to travel from Taipei Main Station of Danshui Line to
Qilian of Danshui Line, it will cost him $30.

Therefore, the alternative fare model handles line routes with variable fare

rate and fixed fare rate separately. For variable fare rate, we still use the same
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Figure 5.4. Network construction for variable fare rate in alternative
fare model

procedures in CTFBN to construct in-route arcs and artificial arcs. But there will
be costs assigned on transfer arcs which a traveler leaves a variable-fare-rate line
route for a fixed-fare rate line route. On the other hand, for the transfer arcs where
a traveler leaves a variable-fare-rate line route for another variable-fare-rate line
route, there will be no cost assigned. Figure 5.4 demonstrates this construction
with the assumption that MRT has a variable fixed rate and bus has a fixed fare
rate of $15.

For fixed fare rate, the costs are assigned on artificial arcs, and there will be no
cost on in-route arcs. However, if a traveler leaves a fixed-fare-rate line route for
a variable-fare-rate line route, there will be no cost assigned on the transfer arcs.
On the other hand, for transfer arcs where a traveler leave a fixed-fare-rate line
route for another fixed-fare-rate line route, there will be costs assigned on them.
Figure 5.5 demonstrates this construction with the assumption that MRT has a

variable fixed rate and bus has a fixed fare rate of $15.
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Figure 5.5. Network construction for fixed fare rate in alternative
fare model

Through this approach, in-route arcs connect only adjacent nodes within the
same line route in contrast with forming a complete graph. If a line route has
n nodes, there will be n — 1 arcs in the alternative fare model and there will be
@ in the general fare model. The number of nodes and the number of transfers
arcs and artificial arcs are the same in both general fare model and alternative
fare model. The number of arcs thus reduces significantly. In addition, since
most of the arcs belong to line routes with fixed fare rate such as bus, a great
number of in-route arcs will have zero cost in the alternative fare model. With the

implementation of Dijkstra’s shortest path algorithm, the running time decreases

as the number of zero-cost arcs increases.

5.5.2. Transfer Discount

In Taipei transit system, the first bus transfer after a MRT trip within an hour is
free. For example, if you take MRT to travel from Taipei Main Station of Danshui

Line to Taipei City Hall of Nangang Line, and then switch to a bus to travel from
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Figure 5.6. Modification on arc cost of transfer arc connecting MRT
to bus

Taipei City Hall to National Palace Museum, the bus ride will be free as long as
the line route consists of single leg. In this case, we will change the costs to zero
on arcs connecting a MRT line route to bus line route. Figure 5.6 illustrates this
modification.

Similarly, we can apply this technique to any transfer discount.

5.6. Computational Experiments on Alternative Fare Models

This section summarizes our computational results of fare information problem
using the alternative fare model. After introducing the implementation settings,
datasets from Taipei transit system will be used for the implementations. We will

conduct our optimization process with Dijkstra’s algorithm.
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5.6.1. Settings and Problem Sets for the Implementation

All of our computational experiments are conducted using Microsoft Visual Studio
2005 on a Acer Aspire machine with an Intel Core 2 Duo processor at 1866 MHz
and 2039 MB RAM running Microsoft Windows XP SP2.

We test our implementation on problem sets based on the bus datasets obtained
from China Engineering Consultants Incorporation (CECI) and MRT datasets
obtained from Taipei Rapid Transit Corporation (i.e. Taipei Metro). The bus
datasets consists of bus route information and bus stop locations. The MRT
datasets consists of MRT station location and the travel fare between each MRT
station. Since the bus datasets do not include fare information, we assume that
the travel fare between every bus stop on the same line route is a fixed number;

in our case, for any journey on the same line route, the travel fare is set at $15.

5.6.2. Algorithmic Running Time Comparison

We select 5 problem sets for computational experiments. Problem set P; consists
of 139 line routes, 3392 transit stations, and 11001 arcs. Problem set Py consists
of 160 line routes, 3732 transit stations, and 13183 arcs. Problem set P3 consists
of 187 line routes, 4117 transit stations, and 14892 arcs. Problem sets P4 consists
of 202 line routes, 4240 transit stations, and 15854 arcs. Problem set Pjs, the
complete network of Taipei transit system, consists of 336 line routes, 5451 transit
stations, and 25736 arcs.

For each problem set, we select 10 groups of OD pairs. In each OD groups,
there are 100 OD pairs with approximately same Fuclidean distance. In addition,
we conduct experiment on 5000 OD pairs with origins and destinations randomly
selected. Each OD pair was checked by Depth-First Search (DFS) to assure feasible
solutions before applying topological ordering algorithm. The unit of time for
performance comparison is central processing unit time (CPU time). CPU time

is the amount of time that a computer program consumes in processing central
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Table 5.8. Average running time using alternative fare model on
problem set 5 for different OD group

| Problem Set | OD Group || DIAT |

Ps 1 3069
Ps 2 3258
Ps 3 3418
Ps 4 3503
Ps ) 3621
Ps 6 3792
Ps 7 3886
Ps 8 3927
Ps 9 4072
Ps 10 4163
time unit in CPU click

Table 5.9. Average running time using alternative fare model on five
problem set for randomly selected OD group

’ Problem Set \ DIAT ‘

P, 2710
P, 2796
Ps 2851
P 2961
P, 3204
time unit in CPU click

processing unit (CPU) instructions. The CPU time is often measured in clock
ticks and is thereby used as a point of comparison for CPU usage of a program.
Dijkstra’s algorithm with binary heap, denoted as DIAT, is implemented for
computational experiments. A binary heap data structure requires O(logn) time
to perform insert, decrease-key and delete-min, and it requires O(1) time for the
other heap operations. Consequently, the binary heap version of Dijkstra’s algo-
rithm runs in O(mlogn) time. The results for problem set 5, the complete Taipei
transit system, are summarized in Table 5.8. As for the computational perfor-
mance on 5000 randomly selected OD pairs, the results are presented in Table
5.9. Results for other problem sets are shown in Appendix D. We notice that the

running time reduces significantly in comparison with the general fare model.



71

5.7. Summary

In this chapter, we solve the fare information problem. In addition to the line
route information of a transit system, our problem takes fare information into
consideration. In order to incorporate fare information, a new network, fare-based
network, is constructed through algorithm CTFBN. After constructing the basic
timetable-based network, we then apply algorithm LTF with implementations of
Dijkstra’s shortest path algorithm with binary heap. We also propose an alter-
native fare model to serve Taipei transit system more efficiently. Our alternative
model handles line routes with variable fare rate and fixed fare rate separately, and
thus reduces the number of arcs and reassigns some arcs with zero costs. More-
over, we can implant transfer discounts in the alternative fare model by changing
the arc costs on transfer arcs..

By conducting computational experiments on datasets from Taipei transit net-
work, the results have shown reasonable efficiency on PC. Furthermore, we reduces
the running time by using the alternative fare model. The reduction attributes to
the reduction of arcs and reassignment of arc costs. However, our method may
not be efficient enough to implement on a application server, which is a software
engine that delivers applications to client computers or devices, typically through
the Internet and using the HyperText Transfer Protocol (HTTP), let alone mobile
devices. Application servers are distinguished from web servers by the extensive
use of server-side dynamic content and frequent integration with database engines.
To expand the utilization of our method, we can research into more speed-up tech-

niques in the future.



CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

This chapter concludes the thesis by highlighting our contributions in Section
6.1, and then suggesting some potential directions for future research in compu-

tational efficiency, system building and their related problems in Section 6.2.

6.1. Summary and Contributions

This thesis contains frameworks for generating itinerary for passengers in a
transit network when timetable information or fare information are available. Dur-
ing the past five decades, many new methods and applications related to trans-
portation and transit system have been proposed and researched, but few were in
regard to timetable information and fare information.

Assuming that a passenger’s objective is to minimize the total travel time to
the intended destination in a transit system, we consider two situations" basic
timetable information problem, and multimodal timetable information problem
with walking transfer.

In Chapter 3, we discuss the basic timetable information problem. In this
problem, a passenger can only travel from one transit station to another by tran-
sit vehicle. In other words, our proposed solution needs to generate an itinerary
with minimal travel time while walking is not a transportation means. Through
our solution method, we first construct a timetable-based network. Since the
timetable-based network is acyclic, we then use a topological-ordering-based algo-
rithm inspired by Ahuja et al. [1] to find the shortest path. Although shortest
path problem for transit system has been researched for many years, to the best
of our knowledge, there exists no topological-ordering-based algorithm designed

specifically for solving timetable information problems.

72
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Numerical results are presented to illustrate the efficiency of our proposed
method; the results have shown reasonable efficiency on PC. In addition, by show-
ing the numerical results of classical shortest path algorithm, Dijkstra’s algorithm,
we demonstrate the disparity in efficiency of Dijkstra’s algorithm and topological
ordering algorithm. The computational results match the theoretical prediction
that topological ordering algorithm performs more efficiently than Dijkstra’s al-
gorithm. For application servers or mobile devices, the CPU and memory may be
inferior to those of PC. We thus proposed two speed-up techniques to improve the
efficiency of our method. The computational results of our first speed-up tech-
nique, which applied Depth-first Search to find a feasible solution and set an upper
boundary to the posterior topological ordering algorithm, indicate improvement
of more than 50% on running time in comparison to the plain topological ordering
algorithm.

In Chapter 4, we discuss the multimodal timetable information problem with
walking transfer. In this problem, a passengers is allowed to walk from one transit
station to another. Compared with basic timetable information problem, the
number of arcs greatly increases in this problem. Analogous to basic timetable
information problem, our proposed solution method first constructs an acyclic
timetable-based network. Then we apply a topological-ordering-based algorithm
to solve the shortest path problem.

Finally, in Chapter 5 we discuss the fare information problem where a passen-
ger’s objective is to minimize the total travel cost to the intended destination in
a transit system. Since listing walking as a transportation means will result in
all-walking itinerary, we exclude walking from our problem. Through our solution
method, we first construct a fare-based network. With no timetable informa-
tion embedding, the fare-based network is not acyclic. Therefore, we implement
Dijkstra’s algorithm with binary heap to solve the shortest path problem. The

numerical results indicate reasonable efficiency on PC. However, we also propose
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an alternative fare model to further improve the computational efficiency. Our
alternative fare model reduces the number of in-route arcs while the number of
transfer arcs and artificial arcs remain the same.

Since travel distance, travel time, and travel cost are some of the most im-
portant concerns for a transit passenger, designing solution methods for timetable
information problem and fare information problem, as we have researched in Chap-

ter 3, 4, and 5, is rather crucial.

6.2. Applications on Different Platforms

In this section, we summarize the differences between two platforms, computers
and mobile devices. We then indicate how to implement our model to generate

itineraries on different platforms.

6.2.1. Platforms

On a sparse network, such as the timetable-based network or fare-based network
in the thesis, single-source shortest path algorithm is more suitable than all-pairs
shortest path. Therefore, our research focuses on improving computational effi-
ciency of single-source shortest path algorithm. However, different platforms may
require different types of shortest path algorithms in correspondence with platform
environments.

A mobile device, also known converged device, handheld device, or simply
handheld, is a pocket-sized computing device, typically having a display screen
with touch input or a miniature keyboard. Smartphones and PDAs are most com-
mon among those who require the assistance and convenience of a conventional
computer in environments where carrying one would not be practical. Although
most smartphones and PDAs have both color screens, audio capabilities, and in-
ternet connection, most of them are equipped with CPU and memory inferior

to computers. Many smartphones and PDAs run using a variation of the ARM
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architecture. The ARM architecture is a 32-bit RISC (Reduced instruction set
computer) microprocessors that are also widely used in mobile devices and em-
bedded systems. For example, one of the most advanced smartphones, iPhone by
Apple Inc., runs a 667MHz ARM1176JZF-based CPU made by Samsung, which
is a SIMD (Single instruction, multiple data), high perf integer CPU with 8-stage
pipeline, 675 Dhryston, and 2.1 MIPS (Million instructions per second). The CPU
for iPhone clocks much slower than the CPU for PC, such as a typical Intel Core
2 Duo Processor E8500 which clocks at 3.16 GHz. With slower CPU, smaller
memory space, and limited battery life, a mobile device thus focuses on compu-
tational efficiency so that each operation will not consume too much energy. In
other words, we can consume less energy by finishing the operation quicker.

On the other hand, a personal computer (PC) may be a desktop computer, a
laptop computer, or a tablet computer. The most common operation systems are
Microsoft Windows, Mac OS, and Linux, while the most common microprocessors
are the x86 and PowerPC CPUs. The distinguishing characteristics of PC are
that the computer is primarily used, interactively, by one person at a time. This
is contrast to the batch-processing or time-sharing servers which allow the systems
to be used by many people, usually at the same time.

In information technology, a server is a device that performs for connected
clients as part of the client-server architecture. Server computers are devices
designed to run server application that accepts connections in order to service re-
quests by sending back responses, often for extended periods of time with minimal
human direction and maintenance. Under light loading, every server application
can run concurrently on a single server computer and under heavy loading, multi-
ple server computers may be required for each application. Although servers can
be built from commodity computer components, dedicated, high-load, mission-
critical servers use specialized hardware that is optimized for the needs of servers.

CPU speeds are far less critical for many servers than they are for many PCs.
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Not only are typical server tasks likely to be delayed more by Input/Output (I1/0)
requests than processor requirements, but also the lack of any graphical user in-
terface (GUI) in many servers frees up great amount of processing power for other
tasks, making the overall processor power requirement lower. The lack of GUI in a
server makes it unnecessary to install expensive video adapters. Similarly, elabo-
rate audio interfaces, joystick connections, USB (universal serial bus) peripherals,
and the like are usually unnecessary. Typical servers include heavy-duty network
connections in order to allow them to handle the large amounts of traffic that they
typically receive and generate as they receive and reply to client requests. In brief,

the key characteristic of servers is to handle I/O requests as soon as possible.

6.2.2. Shortest Path Algorithms

On a mobile device, the memory space is limited. Therefore, it is not practical to
use an all-pairs shortest path algorithm to obtain every possible result and store
them in the database so that the software application can simply display a stored
result upon user query. With searching for shortest path upon every user query
as the only option, improving computational efficiency to conserve battery life
with limited memory space is the key factor. We thus propose several speed-up
techniques to reduce application running time. However, instead of single-source
shortest path algorithm, denoted as SSSPA, we can apply all-pairs shortest path
algorithm, denoted as APSPA, on a different platform, such as computers.
Computers usually have larger disk space for data storage, and thus we can
use an all-pairs shortest path algorithm to find all results and store them into
database if the network has moderate size, such as Taiwan railway network. The
application will seize results from database when a user request an itinerary. Under
this architecture, the application does not need to compute shortest paths upon
query, and thus the running time for each query is a constant time O(1) while

the running time for each query is O(Er), where Gy = (Vr, Er) represents an
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Table 6.1. Comparison between single-source shortest path and all-
pairs shortest path algorithms for timetable problems

SSSPA APSPA

Storage space O(V,+Er)| O(FVZ)
Preprocessing time 0 O(FV . Er)
Query time O(E,) O(1)

Table 6.2. Comparison between single-source shortest path and all-
pairs shortest path algorithms for fare problem

SSSPA APSPA
Storage space OV +Er) o(V32)
Preprocessing time 0 O(V o(E 4V plog Vr))
Query time O(E+V rlog Vi) O(1)

acyclic timetable-based network, by using the topological ordering algorithm for
timetable information problems. However, the preprocessing time for SSSPA and
APSPA are different.

We can solve an all-pairs shortest-paths problem by running a single-source
shortest-path algorithm Vi times, once for each vertex as the source. If all edge
weights are nonnegative, we can use a single-origin-all-destinations algorithm sepa-
rately for each origin. For all-pairs problem, topological ordering algorithm yields
a running time of O(VyEr). In addition, we have to take departure time into
consideration for timetable information problem. Since the passenger departure
time is unknown, we need to enumerate itineraries for all possible departure time.
Let I’ be the collection of time when a transit vehicle leaves a transit station,
and thus the total preprocessing time to solve the all-pairs shortest path prob-
lem for timetable information problems is O(FVyEr) while SSSPA requires no
preprocessing time.

The storage space for data is O(Vy + Er) for SSSPA since we only need to
store the node and arc information of the timetable-based network. On the other
hand, the space required to store all possible itineraries is O(FV?2) because there
are V2 OD pairs for each possible departure time. The comparison is concluded

in Table 6.1.
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As for fare information problem, timetable information has been excluded.
Therefore, the preprocessing time for fare information problem by using APSPA
is O(Vr(Er+ Vrlog Vi)) , where Gr = (Vr, EF) represents a fare-based network,
while SSSPA requires no preprocessing time. The running time for each query
for fare information problem remains a constant time O(1) by using APSPA and
O(Er + Vrlog Vi) by using a Fibonacci heap implementation of Dijkstra’s algo-
rithm since the topological ordering algorithm is not applicable to fare information
problem. The space required to store all possible itineraries by using APSPA is
O(V2) while using SSSPA only takes O(Vr + Er). The comparison is concluded

in Table 6.2.

6.3. Future Research

In this section, we propose some interesting directions for future research.

6.3.1. Multiobjective Shortest Path Problem

Due to the multiobjective nature of many optimization problems, mainly in the
area of transportation problem, in recent years there has been an increase in
research on multiobjective shortest path problem, with goals of relevant interest,
like the minimization of cost, time, unreliability, etc. When a budget of various
resources is given, some objectives related to the corresponding resources can be
treated as constraints for the problem.

It is usually assumed that in multiobjective analysis, the objectives are in con-
flict; therefore, in general, there is no single optimal solution, but rather a set
of nondominated or noninferior solutions, denoted Pareto optimal solutions, from
which the decision maker must select the most preferred one, or the best compro-
mise solution. There are several approaches used for exploring the Pareto optimal

solution set. More specifically, we can distinguish the following three categories:
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generating methods, methods based on utility functions, and interactive meth-
ods. In these methods, the multiobjective shortest path problem becomes a single
objective shortest path problem.

Although the multiobjective shortest path problem fits the reality that a pas-
senger may be concerned for both travel time and travel cost, it is difficult to,
taking methods based on utility functions for example, assign the coefficients for
utility functions individually. Nevertheless, displaying an itinerary fulfilling mul-

tiple objectives may be useful in the real world.

6.3.2. Dynamic Information

Automatic vehicle location (AVL) systems based on global positioning systems
(GPS) have been widely adopted by many transit systems to monitor the move-
ments of transit vehicles on a real-time basis. In our research, we assume that
transit vehicles travel in the absence of congestion. As a result, when predicting
bus arrival times at subsequent bus stops, the delay incurred at one stop will be
carried forward in the downstream direction. In reality, skilled bus operators
sometimes adjust their speeds in order to keep their buses on schedule. Therefore,
prediction accuracy incorporating real-time information for an itinerary planning
system is an issue that should be considered in the context of specific requirements
from the perspectives of system users and system suppliers.

It would be useful to provide a passenger with an itinerary using both static
information and dynamic information. Static information refers to bus schedule
information, historical information of traffic conditions, etc. Dynamic informa-
tion includes real-time bus location data, delay at bus stops, weather condition,
current traffic condition, etc. However, the amount of information could be too
enormous for a mobile device or an application server to process. In reality, it is

unrealistic to carry a laptop equipped with Internet access all the time; therefore,
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the computational efficiency needs further improvement to incorporate dynamic

information on a mobile device.

6.3.3. Geographic Information System

One of the recent development in GIS technology is to deliver GIS data and
analysis functions on the Web through the Internet. Internet GIS, an emerging
technology to serve GIS data and GIS functionality on the Web, is designed to
integrate the Web and GIS in order to manipulate, visualize, and analyze GIS
data on the Web. A transit information system could be composed of the Web
browser, Web server, and one or more application servers. The Web browser is
a user interface to collect user input. The Web server serves as a middleware
to handle user’s request and transfer the request to an application server. The
application server is used to process user requests. The application server could be
composed of three different components, a map server, a network analysis server,
and a database server. The map server is designed for map rendering and spatial
analysis; the network analysis server is used to provide network analysis functions,
such as shortest path algorithms; and the database server is used to handle data
management via DBMSs.

A Web-based transit information system could integrate Internet GIS into it so
that the user interface is map-based. The user can thus interact with the transit
network and street maps, conducting query, search, and map rendering. The
interactive map-based user interface also allows the system to incorporate other
information, such as shops, theaters, parks, and other local attractions. This
is very important for visitors who may want to explore these sites around their
destinations. However, building a transit information system is beyond the scope

of this thesis, and can be exploited as a future research.
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APPENDIX A

COMPUTATIONAL EXPERIMENTS ON BASIC

TIMETABLE INFORMATION PROBLEMS

This appendix lists computation results of different shortest path algorithms,

DI1J, TO, and SPT, on datasets derived from Taipei transit system and the im-

provement of efficiency by using our proposed speed-up technique.

Table A.1. Relative performance on problem set 1

oD Group || DIJ | TO [ SPD  (=pFs+10AD) | ATp || SPB  (=BFs+T0AB) | AT |
1 3895 || 2144 || 1032 (=591+441) 54.1% || 1031 (=594+437) 51.9%
2 4039 || 2270 || 1082 (=615+466) 54.0% || 1086 (=623+463) 52.1%
3 4096 || 2320 || 1109 (=632+477) 54.1% || 1106 (=640+466) 52.3%
4 4250 || 2457 || 1175  (=669+506) 54.1% || 1155 (=670+485) 53.0%
5 4351 || 2550 || 1216  (=694+522) 54.2% || 1181 (=700+481) 53.7%
6 4419 || 2632 || 1246 (=705+539) 54.2% || 1211  (=719+493) 54.0%
7 4378 || 2609 || 1237 (=705+532) 54.3% || 1214 (=714+500) 53.4%
8 4586 || 2822 || 1335 (=757+578) 54.3% || 1305 (=779+526) 53.7%
9 4645 || 2878 || 1363  (=774+589) 54.3% || 1362 (=779+583) 52.6%
10 4811 || 3041 || 1435 (=814+621) 54.3% || 1419 (=824+595) 53.3%

time unit in CPU click ATp = (TO — SPD)/TO X 100% ATpg = (TO — SPB)/TO X 100%

Table A.2. Relative performance on problem set 2

oD Group | DIJ || TO || SPD (=pFst+T0AD) | ATp || SPB (=BFs+T0AB) | ATp |
1 4096 || 2296 || 1078 (=605+471) 53.1% || 1047 (=609+438) 54.4%
2 4220 || 2413 || 1151 (=655+496) 52.3% || 1127 (=662+465) 53.3%
3 4208 || 2423 || 1153  (=653+498) 52.5% || 1141 (=671+470) 52.9%
4 4301 || 2516 || 1188 (=672+515) 52.8% || 1201 (=690+511) 52.3%
5 4675 || 2896 || 1373 (=783+589) 52.6% || 1375 (=786+589) 52.5%
6 4827 | 3024 || 1418 (=799+617) 53.2% || 1372  (=805+567) 54.6%
7 4925 || 3109 || 1455 (=821+632) 53.3% || 1414 (=830+584) 54.5%
8 5161 || 3368 || 1583 (=894+687) 53.0% || 1572 (=913+659) 53.3%
9 5226 || 3456 || 1623 (=918+703) 53.1% || 1632 (=939+693) 52.8%
10 5286 || 3461 || 1622 (=920+702) 53.1% || 1595 (=922+673) 53.9%

time unit in CPU click ATp = (TO — SPD)/TO X 100% ATpg = (TO — SPB)/TO X 100%

86



Table A.3. Relative performance on problem set 3
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oD Growp || DIJ | TO || SPD

=prs+T10AD) | ATp || SPB

—BFS+TOAB) | ATp |

( (
1 4075 || 2281 || 1088 (=620+468) 52.3% || 1073 (=635+438) 52.9%
2 4246 || 2437 || 1162  (=663+499) 52.3% || 1152  (=663+489) 52.7%
3 4456 || 2672 || 1259 (=714+545) 52.9% || 1249 (=719+530) 53.2%
4 4646 || 2863 || 1364 (=778+586) 52.4% || 1362 (=797+565) 52.4%
5) 4804 || 3009 || 1410 (=796+614) 53.1% || 1399 (=805+594) 53.5%
6 4883 || 3095 || 1459 (=827+632) 52.9% || 1443 (=829+614) 53.4%
7 5057 || 3232 || 1507 (=846+661) 53.4% || 1526 (=866+659) 52.8%
8 5275 || 3457 || 1617 (=914+703) 53.2% || 1631 (=936+695) 52.8%
9 5340 || 3543 || 1660 (=936+724) 53.1% || 1663 (=962+701) 53.1%
10 5910 || 4131 || 1934 (=1096+838) 53.2% || 1914 (=1121+793) 53.7%
time unit in CPU click ATp = (TO — SPD)/TO X 100% ATpg = (TO — SPB)/TO X 100%

Table A.4. Relative performance on problem set 4

oD Growp || DIJ [| TO | SPD

=prs+10AD) | ATp || SPB

—BF$+TOAB) | ATp |

( (
1 4199 || 2386 || 1152 (=661+491) 51.9% || 1112  (=663+449) 53.4%
2 4329 || 2532 || 1221 (=699+522) 51.8% || 1209 (=712+497) 52.3%
3 4498 || 2700 || 1273 (=721+552) 52.9% || 1253 (=729+524) 53.6%
4 4750 || 2900 || 1396 (=794+602) 51.9% || 1369 (=801+568) 52.8%
) 4756 || 2957 || 1385 (=781+604) 53.2% || 1347 (=793+554) 54.5%
6 4944 || 3129 || 1485 (=844+641) 52.5% || 1449 (=862+587) 53.7%
7 5358 || 3549 || 1656 (=932+724) 53.3% || 1606 (=943+663) 54.8%
8 5144 || 3360 || 1566 (=879+687) 53.4% || 1529 (=884+645) 54.5%
9 5667 || 3857 || 1796 (=1014+782) 53.4% || 1765 (=1040+725) 54.2%
10 9846 || 4037 || 1874 (=1055+819) 53.6% || 1855 (=1078+777) 54.0%
time unit in CPU click ATp = (TO — SPD)/TO X 100% ATpg = (TO — SPB)/TO X 100%




APPENDIX B

COMPUTATIONAL EXPERIMENTS ON
MULTIMODAL TIMETABLE INFORMATION

PROBLEMS WITH WALKING TRANSFER

Table B.1. Relative performance on problem set 1

oD Group | DIJ [ TO [ SPD (=prs+10AD) | ATp | SPB  (=Brs+10AB) | ATp |
1 9478 || 6372 || 2923 (=1637+1286) 54.1% || 2858 (=1665+1193) | 55.1%
2 9777 || 6675 || 3070 (=1722+1348) 54.0% || 3069 (=1731+1338) | 54.0%
3 10050 || 6948 || 3789 (=1785+1404) 54.1% || 3148 (=1827+1321) | 54.7%
4 10363 || 7253 || 3326 (=1864-+1463) 54.1% || 3236 (=1890+1346) | 55.4%
5 10655 || 7553 || 3461 (=1937+1524) 54.2% || 3411 (=1963+1448) 54.8%
6 10919 || 7817 || 3583 (=2006+1576) 54.2% || 3515 (=2044+1471) | 55.0%
7 11295 || 8191 || 3747 (=2097+1650) 54.3% || 3749 (=2102+1647) | 54.2%
8 11543 || 8442 || 3856 (=2155+1701) 54.3% || 3851 (=2201+1650) | 54.4%
9 11862 || 8762 || 4004 (=2240+1765) 54.3% || 3889 (=2268+1621) | 55.6%
10 12245 || 9152 || 4181 (=2337+1843) 54.3% || 4114 (=2375+1739) 55.0%

time unit in CPU click ATp = (TO — SPD)/TO X 100% ATpg = (TO — SPB)/TO X 100%

Table B.2. Relative performance on problem set 2

oD Growp | DIJ [| TO [[SPD (=prs+T0AD) | ATp | SPB  (=BFs+10AB) | ATp |

( (
1 9533 || 6425 || 2957 (=1661+1296) 54.2% || 2864 (=1661+1203) | 55.4%
2 9847 || 6751 || 3103 (=1741+1362) 54.1% || 3053 (=1780+1273) | 54.8%
3 10157 || 7063 || 3241 (=1816+1425) 54.2% || 3223 (=1823+1400) | 54.4%
4 10425 || 7327 || 3362 (=1883+1478) 54.2% || 3360 (=1905+1455) | 54.1%
5 10708 || 7615 || 3489 (=1951+1538) 54.2% || 3449 (=1961+1488) | 54.7%
6 11031 || 7933 || 3628 (=2029+1599) 54.3% || 3587 (=2038+1549) | 54.8%
7 11363 || 8258 || 3780 (=2117+1663) 54.3% || 3735 (=2133+1602) | 54.8%
8 11586 || 8485 || 3882 (=2173+1710) 54.4% || 3924 (=2227+1697) | 53.8%
9 11960 || 8862 || 4052 (=2267+1785) 54.3% || 3950 (=2300+1650) 55.4%
10 12188 || 9079 || 4151 (=2323+1828) 54.4% | 4030 (=2347+1683) | 55.6%

time unit in CPU click ATp = (TO — SPD)/TO X 100% ATpg = (TO — SPB)/TO X 100%
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Table B.3. Relative performance on problem set 3
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oD Group | DIJ [| TO [ SPD (=prs+10AD) | ATp | SPB  (=Brs+10AB) | ATp |
1 9666 || 6558 || 3014 (=1690+1324) 54.0% || 2955 (=1718+1237) | 54.9%
2 9914 || 6808 || 3126 (=1754+1372) 54.1% || 3100 (=1795+1305) 54.5%
3 10257 || 7148 || 3275 (=1833+1442) 54.2% || 3204 (=1881+1323) | 55.2%
4 10523 || 7427 || 3402 (=1904+1498) 54.2% || 3366 (=1955+1411) | 54.7%
) 10959 || 7849 || 3595 (=2013+1583) 54.2% || 3566 (=2019+1547) | 54.6%
6 11152 || 8046 || 3684 (=2062+1622) 54.2% || 3665 (=2104+1561) | 54.4%
7 11498 || 8397 || 3836 (=2144+1691) 54.3% || 3856 (=2208+1648) | 54.1%
8 11661 || 8559 || 3919 (=2195+1724) 54.2% || 3890 (=2214+1676) | 54.5%
9 11870 || 8774 || 4002 (=2241+1767) 54.3% || 3909 (=2245+1664) | 55.4%
10 12339 || 9244 || 4221 (=2360+1861) 54.3% || 4154 (=2380+1774) | 55.1%

time unit in CPU click ATp = (TO — SPD)/TO X 100% ATpg = (TO — SPB)/TO X 100%

Table B.4. Relative performance on problem set 4

oD Group | DIJ [| TO [ SPD (=prs+10AD) | ATp | SPB  (=Brs+10AB) | ATp |
1 9864 || 6753 || 3099 (=1736+1363) 54.1% || 3131 (=1770+1361) | 53.6%
2 10183 || 7082 || 3251 (=1823+1428) 54.1% || 3148 (=1842+1306) 55.5%
3 10496 || 7402 || 3391 (=1897+1494) 54.2% | 3330 (=1909+1421) | 55.0%
4 10720 || 7619 || 3484 (=1951+1536) 54.2% | 3414 (=1999+1415) | 55.2%
b) 11155 || 8048 || 3689 (=2067+1622) 54.2% || 3661 (=2069+1592) | 54.5%
6 11300 || 8201 || 3752 (=2099+1653) 54.3% || 3747 (=2101+1646) | 54.3%
7 11588 || 8492 || 3884 (=2173+1711) 54.3% || 3898 (=2237+1661) | 54.1%
8 12051 || 8947 || 4090 (=2287+1803) 54.3% || 4110 (=2355+1755) | 54.1%
9 12505 || 9207 || 4204 (=2351+1854) 54.3% || 4182 (=2357+1825) | 54.6%
10 12512 || 9410 || 4297 (=2403+1894) 54.3% || 4264 (=2448+1816) | 54.7%

time unit in CPU click ATp = (TO — SPD)/TO X 100% ATpg = (TO — SPB)/TO X 100%




APPENDIX C

COMPUTATIONAL EXPERIMENTS ON FARE

INFORMATION PROBLEMS

This appendix lists computation results of Dijkstra’s algorithm with binary

heap on datasets derived from Taipei transit system.

Table C.1. Average running time on problem set 1 for different OD group

’ Problem Set \ OD Groups H DIJF ‘

Py 1 4500
P 2 4742
Py 3 5039
Py 4 5199
Py 5} 5432
P, 6 o717
P, 7 5796
Py 8 6002
Py 9 6218
Py 10 6375
time unit in CPU click

Table C.2. Average running time on problem set 2 for different OD group

| Problem Set | OD Groups || DIJF |

Py 1 4748
Py 2 5021
P, 3 5282
Py 4 5388
Py 5} 5587
Ps 6 5851
Po 7 6064
P, 8 6116
Py 9 6328
Py 10 6615
time unit in CPU click
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Table C.3. Average running time on problem set 3 for different OD group

] Problem Set \ OD Groups H DIJF \

P, 1 4300
P3 2 5034
Ps 3 5349
P3 4 5543
Ps ) 0764
P3 6 5934
P3 7 6135
P3 8 6344
Ps 9 6304
P3 10 6644

time unit in CPU click

Table C.4. Average running time on problem set 4 for different OD group

’ Problem Set \ OD Groups H DIJF ‘

Py 1 4933
Py 2 5156
Py 3 5415
Py 4 5593
P4 5} 5745
Py 6 6080
Py 7 6173
Py 8 6338
Py 9 6529
Py 10 6708
time unit in CPU click




APPENDIX D

COMPUTATIONAL EXPERIMENTS ON FARE
INFORMATION PROBLEMS WITH ALTERNATIVE

FARE MODEL

This appendix lists computation results of Dijkstra’s algorithm with binary

heap using alternative fare model on datasets derived from Taipei transit system.

Table D.1. Average running time using alternative fare model on
problem set 1 for different OD group

’ Problem Set \ 0D Groups H DIJF ‘

Py 1 2702
Py 2 2876
Py 3 3002
P, 4 3117
P, ) 3249
P 6 3457
Py I/ 3548
P 8 3591
Py 9 3698
Py 10 3812
time unit in CPU click

Table D.2. Average running time using alternative fare model on
problem set 2 for different OD group

| Problem Set | OD Groups || DIJF |

Py 1 2837
Ps 2 3004
P, 3 3147
P, 4 3271
Py 5} 3397
Ps 6 3580
Po 7 3613
P, 8 3730
Py 9 3851
Py 10 3916
time unit in CPU click
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Table D.3. Average running time using alternative fare model on
problem set 3 for different OD group

| Problem Set | OD Groups || DIJF |

Ps 1 2914
P3 2 3041
Ps 3 3186
Ps 4 3278
P3 ) 3445
P3 6 3620
P3 7 3720
Ps 8 3809
P3 9 3956
Ps 10 3977
time unit in CPU click

Table D.4. Average running time using alternative fare model on
problem set 4 for different OD group

] Problem Set \ OD Groups H DIJF \

Py 1 2907
Py 2 3021
P4 3 3235
P, 4 3336
Py 5} 3451
Py 6 3679
Py 7 3713
Py 8 3863
Py 9 3949
Py 10 3957
time unit in CPU click






